
Canonical for Rocq

Supervisors: Pierre Boutry, Chase Norman, Loïc Pujet

Background

Canonical

Proving a theorem in the Rocq Prover [9] boils down to encoding the theorem as a type, and then
finding a proof term that inhabits it. Ideally, we would like to have powerful tactics to help us find
these proof terms, but since type theory can be used to encode arbitrary mathematical theorems,
determining whether a type is inhabited is undecidable. Thus, in practice, most tactics solve
a more restricted class of problems, which can be phrased in a decidable and well-understood
theory (for instance, lia is a solver for Presburger arithmetic).

However, some tactics take a more general approach, by encoding the goal in higher-order
logic (HOL), invoking solvers such as Vampire [4], and reconstructing a proof term to close the
goal. These are known as hammers [3]. By design, these systems can only use the logical con-
nectives of HOL, cannot directly reason with dependent types, and cannot synthesize functions
or objects constructively. Additionally, hammers do not present an axiomatic proof term to the
user, as such a term would be much too large to be read.

In a recent contribution [6], Norman and Avigad introduced Canonical, the first solver for
type inhabitation in dependent type theory. Canonical searches exhaustively for terms of any
type involving dependent products (Π-types), record types, inductive types, and let definitions.

From an inhabitation solver to a Lean tactic

Canonical does not work with the type theory of any particular proof assistant – instead, it works
with its own type theory. This theory is rather barebones by default, but it can be extended
with constants and equations to simulate more sophisticated type theories such as the ones used
by Agda [1], Lean [5] and Rocq.

In order to use Canonical in Lean, Norman and Avigad have designed a tactic which encodes
the current goal in the type theory of Canonical, calls the solver on it, and finally reconstructs a
Lean proof term that the user can paste in their proof script. This tactic manages to solve 84%
of the exercices in the Natural Number Game [2], which is perhaps the most popular tutorial
for Lean. Canonical can also work with higher-order objects, for instance it manages to find a
proof term for Cantor’s diagonal argument.

Goals of the internship

The goal of the internship is to write a Rocq tactic that invokes canonical. The first step is to
encode the theory of Rocq into the type system of Canonical, which requires the intern to get



acquainted with the internals of Rocq. The second step is to write the foreign function interface
that will reify a Rocq goal and call Canonical on it. To achieve this, the intern will pick a
language for metaprogramming in Rocq such as OCaml, Metarocq [7] or Rocq-Elpi [8]. Finally,
the tactic will use the result found by Canonical to reconstruct a proof term in the syntax of
Rocq.

Required skills

The intern is expected to have some experience with functional programming, with dependent
type theory, and with the use of at least one proof assistant based on dependent type theory.

Organization

The internship will take place in the University of Strasbourg, where Pierre Boutry and Loïc
Pujet are based. Chase Norman is based in Carnegie Mellon University, Pittsburgh (USA), and
thus we will organize a weekly or bi-weekly video meeting with him.

References

[1] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda – A Functional Language
with Dependent Types. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, Theorem Proving in Higher Order Logics, pages 73–78, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[2] Kevin Buzzard, Jon Eugster, Alexander Bentkamp, Mohammad Pedramfar, and Patrick
Massot. Natural number game. Available at https://adam.math.hhu.de/#/g/
leanprover-community/nng4 (2025/03).

[3] Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automation for dependent type
theory. Journal of automated reasoning, 61(1):423–453, 2018.

[4] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Verification, pages 1–35, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg.

[5] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28,
pages 625–635, Cham, 2021. Springer International Publishing.

[6] Chase Norman and Jeremy Avigad. Canonical for Automated Theorem Proving in Lean. In
Yannick Forster and Chantal Keller, editors, 16th International Conference on Interactive
Theorem Proving (ITP 2025), volume 352 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1–14:20, Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[7] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project.
Journal of Automated Reasoning, February 2020.

2

https://adam.math.hhu.de/#/g/leanprover-community/nng4
https://adam.math.hhu.de/#/g/leanprover-community/nng4


[8] Enrico Tassi. Elpi: rule-based meta-language for Rocq. In CoqPL 2025 - The Eleventh In-
ternational Workshop on Coq for Programming Languages, Denver (Colorado, USA), United
States, January 2025.

[9] The Rocq Development Team. The Rocq Prover. https://doi.org/10.5281/zenodo.
15149629, April 2025.

3

https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629

