Université 'C‘ JB'
' —
de Strasbourg =

A syntax for proof-relevant Observational Type Theory

Supervisor: Loic Pujet

Background

Extensionality Principles in Type Theory

Dependent type theories, and especially those based on Martin-Lo6f’s type theory (MLTT) [4],
are a popular choice of foundations for proof assistants. For instance, Agda, Lean, and Rocq
are all based on some extension of MLTT.

An interesting aspect of these theories is the coexistence of two distinct notions of equality:
a definitional equality that records the equations which are automatically handled by the system
(mostly consisting of 5 and 7 reductions), and a propositional equality that is a proper type and
can be used to state theorems about equality. Unfortunately, the propositional equality fails to
capture some principles which are commonly in mathematical reasoning, most notably

e the principle of function extensionality, which states that two functions are equal if and
only if they send every input to equal outputs, and

e the principle of propositional extensionality, which states that two propositions are equal
if and only if they are logically equivalent.

Of course, one can always postulate these principles as axioms, but doing so breaks the Curry-
Howard correspondence between proofs and programs. This makes the theory less usable in
practice, since such axioms do not have computational content.

The setoid model

There is a folklore trick to recover function and proposition extensionality without breaking
the Curry-Howard correspondence: define a setoid to be a type A which is equipped with an
equivalence relation (called the setoid equality on A), and define a setoid morphism between
two setoids to be a function that preserves the setoid equality. By using setoids and systemat-
ically proving that all the relevant functions preserve setoid equalities, we can do extensional
mathematics in MLTT without needing any axiom. The downside of this technique is that it
makes the reasoning more bureaucratic, as most functions respect the natural setoid equalities
for trivial reasons, yet we are forced to spell them explicitly.

In order to automatically take care of these boring proof obligations, Hofmann had the idea
of designing a model of type theory which interprets types as setoids, equality types as setoid
equalities, and terms as setoid morphisms [3|. Crucially, Hofmann’s model is written in plain
MLTT, which means that it can be used as a compiler: the user is free to work in a type theory
that is extended with extensionality axioms, and once their proof is finished, the user can use
Hofmann’s model to translate it into plain, axiom-free MLTT.

Observational type theory

Hofmann’s original model did not support all the rules of MLTT, but Altenkirch later discovered
a way to recovers the missing rules [I]. However, his solution requires that the setoid equalities
do not carry any computationally relevant information. This is not a problem for modelling all
of MLTT plus extensionality, but it does means that some other desirable principles (such as
unique choice and large elimination of Acc) cannot be interpreted in that model.

A few years down the line, Altenkirch, McBride and Swierstra used the setoid model to
design a new type theory, called Observational Type Theory (OTT) [2]. OTT is an extension of
MLTT which supports the missing extensionality principles without losing any computational
content [7]. As such, OTT constitutes a reasonable choice of foundations for a proof assistant.

Goals of the internship

The goal of this internship is to design a type theory based on a new setoid model which supports
stronger principles, such as the large elimination rule for Acc [6, [5]. This type theory should
extend MLTT in a similar way that OTT does, but with improved expressive power.

If time permits, the intern can then try to prove some important properties of the resulting
theory, such as canonicity and normalisation. Another possible direction is to try to implement
the type theory, turning it into a practical system that can be used for proving theorems.

Required skills

The intern is expected to have some experience with proof assistants and with type theory.
Ideally, the intern will have some familiarity with a programming such as OCaml, Haskell or
Rust, but this is not mandatory.

Organization

The internship will take place in the University of Strasbourg.

References

[1] Thorsten Altenkirch. Extensional Equality in Intensional Type Theory. In Proceedings of
the 14th Annual IEEE Symposium on Logic in Computer Science, LICS '99, page 412, USA,
1999. IEEE Computer Society.

[2] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now!
pages 57—-68, 10 2007.

[3] Martin Hofmann. Eztensional Concepts in Intensional Type Theory. PhD thesis, University
of Edinburgh, 1995.

[4] Per Martin-Lof. An Intuitionistic Theory of Types: Predicative Part. In H.E. Rose and
J.C. Shepherdson, editors, Logic Colloquium 73, volume 80 of Studies in Logic and the
Foundations of Mathematics, pages 73—-118. Elsevier, 1975.

[5] Loic Pujet. A strict, proof-relevant setoid model. https://github.com/loic-p/
strict-setoids/tree/main, 2025.

https://github.com/loic-p/strict-setoids/tree/main
https://github.com/loic-p/strict-setoids/tree/main

[6] Loic Pujet. An Inductive Universe for Setoids. https://pujet.fr/pdf/TYPES25_setoid_
universe.pdf) 2025.

[7] Loic Pujet and Nicolas Tabareau. Observational Equality: Now For Good. Proceedings of
the ACM on Programming Languages, 6(POPL):1-29, January 2022.

https://pujet.fr/pdf/TYPES25_setoid_universe.pdf
https://pujet.fr/pdf/TYPES25_setoid_universe.pdf

