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Abstract—In classical mathematics, a CW complex is a topo-
logical space which can be built up inductively by gluing together
cells of increasing dimension. Due to their good categorical
properties, CW complexes have become the main object of
interest in algebraic topology. Although their quasi-combinatorial
nature suggests that a constructive treatment is possible, there
seems to be little literature on the subject – perhaps because of
the important role played by the axiom of choice in the classical
theory of CW complexes.

In this paper, we present a synthetic and constructive account
of the theory of CW complexes in homotopy type theory. Most
notably, we prove a finitary version of the cellular approximation
theorem, which allows us to construct a theory of cellular
homology without needing the axiom of choice or relying on
a pre-existing notion of homology. We prove that our cellular
homology is functorial and that it satisfies a finitary version of
the Eilenberg-Steenrod axioms. Last but not least, we give a
constructive proof of the Hurewicz theorem, which relates the
first non-vanishing homotopy group of a CW complex with the
corresponding homology group. All theorems presented in this
paper have been mechanised in Cubical Agda.

I. INTRODUCTION

Homotopy type theory (HoTT) is an extension of intensional
type theory that is built around an analogy between type theory
and homotopy theory [1]. It provides a synthetic framework
for reasoning about spaces and their homotopy invariants, and
has been successfully used to formalise a number of results
from algebraic topology [2]. In this paper, we present a devel-
opment of the theory of CW complexes in HoTT, including
cornerstone results such as the cellular approximation theorem,
cellular homology, and the Hurewicz theorem.

An important aspect of homotopy type theory is that it is
fully constructive. In particular, neither the law of excluded
middle nor the axiom of choice are available, which means
that we have to reformulate many of our theorems in ways
which make them constructively provable. In return for these
extra efforts, the theorems we prove are more general than
the corresponding theorems from classical algebraic topology:
since HoTT has models in all ∞-toposes [3], [4], the devel-
opments presented in this paper effectively show that cellular
methods are available in this very general setting.

A. Outline and contributions

In Section II, we outline the basic definitions from HoTT
which we will need for our development, with special empha-
sis on homotopy pushouts and truncations.

In Section III, we develop our constructive theory of CW
complexes. Our main contributions are a construction of the
pushout of two cellular maps (Definition 9 and Proposition 10),
and a constructive treatment of the cellular approximation
theorem for maps and homotopies (Theorems 14 and 21). We
define various categories which, to a varying degree, capture
the idea of a cellular space in HoTT, and we study the relations
between these categories.

In Section IV, we apply our results to the construction of
homology theories for our categories of cellular spaces. Our
basic definition of homology groups comes from Buchholtz
and Favonia [5], but we give novel proofs for functoriality
and homotopy invariance: instead of relying on a pre-existing
notion of homology, we use our freshly proved cellular approx-
imation theorem. Finally, we verify that our homology functors
satisfy the Eilenberg-Steenrod axioms. We remark that most
proofs and constructions in this section can be interpreted in
the setting of cellular cohomology. We simply chose to focus
on homology because it constituted an open problem.

In Section V, we prove the Hurewicz theorem for our
homology theory. To this end, we prove a special case of
the so called CW approximation theorem which shows that,
for CW complexes, the usual definition of an n-connected
types in HoTT coincides with the classical definition of an
n-connected CW complex (Corollary 47). We emphasise that
the approximation theorems that underlie this work are results
whose classical proofs tend to be inherently non-constructive.
We hope that our constructive proofs will interest also the
logician who is not necessarily well-versed in HoTT.

All theorems in this paper have been mechanised in the
Cubical Agda proof assistant. The proofs can be found here.

B. Related work

Our definition of CW complexes is based on the definition
given by Buchholtz and Favonia in their work on cellular
cohomology [5]. We develop the theory quite a bit further: we
define cellular maps and cellular homotopies, and we prove
their appurtenant approximation theorems. This lets us prove
that cellular (co)homology is functorial without having to
rely on a pre-existing (co)homology theory. This is especially
valuable for the construction of cellular homology, as there is
no pre-existing notion of homology that has been developed
to the same extent as Eilenberg-MacLane cohomology.

Nevertheless, there is work by Graham on developing
synthetic homology in HoTT using the Eilenberg-MacLane
prespectrum [6]. The resulting functor is expected to satisfy the979-8-3503-3587-3/23/$31.00 ©2023 IEEE
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Eilenberg-Steenrod axioms, but the additivity axiom remains
an open question. Additionally, Christensen and Scoccola
gave a proof of the Hurewicz theorem for this definition of
homology [7]. We emphasise, however, that the proof given
of the Hurewicz in this paper is vastly different in its approach
and that it concerns a different homology theory than the one
used by Christensen and Scoccola.

II. BACKGROUND

In this section we will give a brief introduction to the
elementary constructions and facts from HoTT which are used
in this paper. We assume some level of familiarity with HoTT
and refer the reader to the HoTT Book [1] whose notation we,
for the most part, stay consistent with in this paper. Another
excellent introduction is [8].

a) Π-types: for Π-types, we borrow Agda notation and
often write (a : A)→ B a instead of Πx:aB a. Non-dependent
Π-types are simply denoted A → B. We may still use the
traditional Π-notation when convenient.

b) Path types: given x, y : A, we write x = y for their
identity type. We refer to elements of this type as paths, and
we write reflx : x = x for the constant path. The path induction
rule states that dependent functions ((y, p) : Σy:A(x = y))→
B(y, p) are determined by their action on (x, reflA).

c) Universes and pointed types: we write Type for the
universe of types (at some implicit universe level) and Type⋆
for the universe of pointed types, i.e. the type of pairs (A, ⋆A)
where A : Type and ⋆A : A. For simplicity, we generally write
‘A is a pointed type’ and leave the basepoint implicit. We
always use the notation ⋆A for basepoints.

d) Pointed functions: given two pointed types A and B,
the type of pointed functions A →⋆ B is the type of pairs
(f, ⋆f ) where f : A → B is a function and ⋆f : f ⋆A = ⋆B .
We often simply write f : A→⋆ B and leave ⋆f implicit.

e) Fibres, equivalences and univalence: we write fibf (b)
for the fibre of a function f : A→ B over a point b : B. That
is, fibf (b) := Σa:A(f a = b). A function f : A → B whose
fibres are contractible (i.e. pointed by a unique point) is called
an equivalence. We write f : A ≃ B, and f−1 : B ≃ A for the
induced inverse. The identity id : A→ A is always an equiv-
alence; the univalence axiom says precisely that the function
A = B → A ≃ B defined by path induction by sending reflA
to the identity equivalence is itself an equivalence.

f) The Unit type and the empty type: we write 1 for the
unit type, i.e. the inductive type with one unique constructor
⋆1 : 1, and ⊥ for the empty type.

A. Pushouts

Besides inductive types, we will also make heavy use of
higher inductive types (HITs), which include path constructors
in addition to point constructors. One of the arguably most
important HITs in HoTT is the pushout of a span.

Definition 1 (Pushouts). Given a span Y
f←− X

g−→ Z, we
define its pushout (as indicated in the diagram below) to be
the HIT generated by point constructors
inl : Y → Y ⊔X Z and inr : Z →
Y ⊔X Z, as well as a higher constructor
push : (x : X)→ inl (f x) = inr (g x).

X Z

Y Y ⊔X Z

g

f ⌟

Given a span S, we may also write POS for its pushout.
We always take Y ⊔X Z to be pointed by inl ⋆Y (assuming Y
is pointed). Pushouts will allow us to define most spaces of
interest in this paper. The following three instances of pushouts
are especially important for us.

a) Cofibres: we define the cofibre of a map f : X → Y ,
denoted Cf , by Cf := 1 ⊔X Y . To stay consistent with the
existing literature, we write cfcod instead of inr : Y → Cf .

b) Wedge sums: given a dependent family of pointed
types A : I → Type⋆, we define its wedge sum, denoted∨

i:I(A i), to be the cofibre of the obvious map I → Σi:I(A i).
When we specifically wish to reason about binary wedge sums
of two pointed types A and B, we may also define these
by A ∨ B = A ⊔1 B. We write ι∨ for the canonical map∨

i:I(A i) → Πi:I(A i), which is definable whenever I has
decidable equality.

c) Suspensions: we define the suspension of a type X ,
denoted ΣX , by ΣX := 1 ⊔A 1. We use north and south to
refer to inl ⋆ and inr ⋆ respectively, and merid : A→ north =
south instead of push . Suspensions also allow us to define
spheres inductively by setting S−1 := ⊥, i.e the empty type,
and Sn := ΣSn−1 for n > −1.

Let us state two elementary lemmas concerning pushouts
which will be useful later. The following lemma is proved
using standard pushout-pasting arguments.

Lemma 2. Let f : A→ B with A and B. We have

1) C(cfcod:B→Cf ) ≃ ΣA

2) Cf ≃ ΣA ∨B if B is pointed and f is constant.

We will also need the 3×3-lemma – an incredibly useful
result which was first introduced in the HoTT literature by
Brunerie [2, Lemma 1.8.3] whose notation we also borrow. Let
Aij be a commutative grid of types indexed by I = {0, 2, 4}

A00 A02 A04

A20 A22 A24

A40 A42 A44

f01 f03

f10

f30

f12

f21

f23

f32

f14

f34

f41 f43

as in the diagram to the right.
The 3×3-lemma says that tak-
ing pushouts over rows and then
columns is equivalent to taking
pushouts over columns and then
rows. Let us unwrap this state-
ment. Let A•i and Ai• denote,
respectively, the pushout along column i and the pushout
along row i. That is, let A•i := A0i ⊔A2i A4i and
Ai• := Ai0 ⊔Ai2 Ai4. We produce a span (A•i)i∈I :=

(A•0
f01 ⊔f21 f41←−−−−−−−− A•2

f03 ⊔f23 f43−−−−−−−−→ A•4). We define (Ai•)i∈I

similarly. Let A□• := PO (A•i)i∈I and A•□ := PO (A•i)i∈I .

Lemma 3 (3×3-lemma). A□• ≃ A•□



B. Truncations

We say a type A is a (−2)-type if it is contractible (i.e. if
it consists of a unique element) and, inductively, that it is an
(n+ 1)-type if any identity type x =A y over A is a n-type.
We refer to (−1)-types (i.e. types with at most one element) as
propositions and 0-types (i.e. types which satisfy UIP) as sets.
In HoTT, any type A can be turned into a n-type by forming
its n-truncation, denoted ∥A∥n. This type is defined as a HIT
with a point constructor |−| : A → ∥A∥n and a few addi-
tional constructors forcing ∥A∥n to be an n-type. A detailed
implementation can be found in [1, Section 7.3] but will not be
needed here; all we shall need is the elimination property of the
n-truncation which says that any (possibly dependent) function
f : (x : ∥A∥n)→ B x is uniquely determined by its action on
canonical elements whenever B is a family of n-types. That
is, the map ((x : ∥A∥n) → B x) → ((a : A) → B |a|) is
an equivalence. The philosophy of the elimination principle
is that whenever we are trying to construct an element of a
n-type, we may use ∥A∥n and A interchangeably.

Truncations are crucial for internalising several notions and
constructions from traditional mathematics in HoTT:

a) Choice: we say that a type A satisfies choice if the
canonical map ∥(a : A)→ B a∥−1 → ((a : A) → ∥B a∥−1)
is an equivalence. A typical example of a type which satisfies
choice is Fin(n) := Σi:N(i < n), meaning that we do not need
any axiom to get choice for families indexed over a finite set.

b) Existence: we define ∃a:A(B a) := ∥Σa:A(B a)∥−1 to
encode a notion of ‘classical’ or ‘proof irrelevant’ existence.
If this type is inhabited, we say that there merely exists an
element a : A so that B a holds.

c) Homotopy groups: given a pointed type A and an
integer n ≥ 1, we define the nth homotopy group of A by
πn(A) := ∥Sn →⋆ A∥0. This type turns out to have a group
structure, which is abelian for n ≥ 2. The construction is
functorial via post-composition; for a map f : A →⋆ B, we
write πn(f) : πn(A) → πn(B) for the functorial action. The
construction is also invariant under n-truncation: the canonical
map πn(A)→ πn(∥A∥n) is an isomorphism of groups.

d) Connectedness: we say that a type A is n-connected
if ∥A∥n is contractible. A function f : A → B is said to
be n-connected if all of its fibres are. It is an easy fact that
if f is n-connected, it induces an equivalence on truncations
∥A∥n ≃ ∥B∥n (and thus also on πn).

Another important fact about n-truncations is that they
commute with path types, in the sense that for any x, y : A,
the canonical map ∥x = y∥n → |x| =∥A∥n+1

|y| is an
equivalence [1, Theorem 7.3.12]. This principle, together with
the elimination principle for Sn, gives rise to the following
elementary ‘choice principle’ for Sn.

Lemma 4. Given a dependent type A : Sn → Type, there
exists a function

chooseSn : ((x : Sn)→ ∥Ax∥n−1)→ ∥(x : Sn)→ Ax∥−1

III. CW COMPLEXES IN HOTT
A CW complex is a space which is constructed by an

iterative process of attaching cells: start with a collection of
points (0-dimensional cells), then connect some of them using
1-dimensional line segments to obtain a multigraph, then glue
a collection of 2-dimensional discs to the multigraph, then
3-dimensional cells, and so on. This iterative construction is
captured by the following definition in type theory:

Definition 5. A CW structure is a sequence of types
(X−1

ι−1−−→ X0
ι0−→ X1

ι1−→ . . . ) together with a cardinality
function cX(−) : N → N and attaching maps αX

i : Si ×
Fin(cXi+1)→ Xi satisfying the following two conditions.

A1 X−1 ≃ ∅,
A2 for each i ≥ −1,

the square to the
right is a pushout.

Si × Fin(cXi+1) Fin(cXi+1)

Xi Xi+1

snd

αX
i

ιi

⌟

The cardinality function indicates how many cells should be
added at every stage, and the attaching maps αi explain how
the boundary of each (i+1)-dimensional cell is attached to the
i-skeleton Xi. Finally, the pushout condition states that Xi+1

is obtained from Xi by gluing cones along these boundaries,
as in the ‘hub and spokes’ construction from [1, Section 6.7].
Since we will be using them a lot throughout the paper, we
introduce a special notation for the pushout constructors of
Xi+1: given x : Xi, y : Fin(cXi+1) and s : Si, we write

• ιi x : Xi+1 (as indicated in the diagram),
• cell y : Xi+1, and
• glue(s, y) for the path ιi (αX

i (s, y)) = cell y.
We remark that unlike the usual definition from classical

algebraic topology, our CW structures only allow a finite num-
ber of cells in each dimension. The reason for this limitation
is that we are committed to being fully constructive, and we
would quickly run into issues with the axiom of choice if
we allowed arbitrary sets of cells. Nevertheless, our definition
does allow infinite-dimensional CW structures with cells in
every dimension. This provides a slight generalisation of the
definition used by Buchholtz and Favonia [5], and allows us
to encode important spaces, such as the infinite-dimensional
projective planes. We will often denote CW structures simply
by X∗ : CWstr and leave ι∗, cX∗ and αX

∗ implicit.

Definition 6. Given a CW structure X∗, we define its sequen-
tial colimit to be the HIT X∞ which consists of

• for every x : Xn, a point [x]n : X∞,
• for every x : Xn, a path pushx : [x]n = [ιn x]n+1.

We sometimes write ι∞ x for [x]n when n is clear from context.

Definition 7. We say that a type A is a CW complex if
there merely exists some CW structure X∗ such that A is the
sequential colimit of X∗. Formally, we define

CW := Σ(A : Type) .∃(X∗ : CWstr) . X∞ ≃ A.

In the rest of this paper, we will develop the theory of CW
complexes, building up to a definition of cellular homology
and a proof of the Hurewicz theorem. In doing so, we will take



advantage of the fact that every CW complex is presented by
a CW structure, which allows us to construct most properties
and objects by induction on the dimension. Thus, our first
endeavour shall be the development of a working theory of
CW structures, starting with their natural notion of maps.

Definition 8. A cellular map from X∗ to Y∗ is a pair (f∗, h∗)
where fi : Xi → Yi and hi : (x : Xi)→ fi+1(ιi x) = ιi(fi x),
as depicted on the diagram below:

X−1 X0 X1 ...

Y−1 Y0 Y1 ...

f−1 f0 f1h0 h1

In simpler terms, a cellular map is a map which respects
the dimensions, in the sense that it sends the n-dimensional
skeleton of the source to the n-dimensional skeleton of the
target. For simplicity, we generally write f∗ : X∗ → Y∗ for
a cellular map, leaving h∗ implicit. Every cellular map from
X∗ to Y∗ gives rise to a function f∞ between their colimits:

f∞ : X∞ → Y∞
f∞ [x]n := [fn x]n
apf∞(pushx) := push (fn x) · ap[−]n+1

(hn x).

The identity can be presented as a cellular map, and the
obvious composition of two cellular maps yields the composi-
tion of the colimits. Furthermore, this composition operation is
associative and unital. All this data assembles into a category
CWstr whose objects are CW structures, and whose mapping
sets are given by (the set-truncation of) cellular maps. The
colimit operation then defines a functor from CWstr to the
category CW of CW complexes and ordinary maps.

The interplay between CW and CWstr will be a recurring
theme of this paper: our main object of interest is the category
CW, but we find that it does not offer sufficient control over
the objects and the morphisms. Instead, we define all of our
constructions in CWstr, taking advantage of the inductive
description of spaces and maps, before transporting them to
CW. Our main tool for this transport step will be the cellular
approximation theorem, which provides a partial inverse to the
colimit functor.

A. Pushouts of CW structures

Before embarking on the proof of the cellular approximation
theorem, it might be good to look at a concrete example of
a CW structure, to help the reader build intuition. For this
purpose, we shall explain how to construct the homotopy
pushout of two cellular maps. This construction will play
an important role later down the line, as the definition of a
homology theory requires our category of CW complexes to
be equipped with pushouts.

Definition 9. Let X∗, Y∗, Z∗ be three CW structures, and
(f∗, h∗) : X∗ → Y∗ and (g∗, k∗) : X∗ → Z∗ be two cellular
maps. We define the pushout of the span Y∗

f∗←− X∗
g∗−→ Z∗ to

be the CW structure (Y ⊔X Z)∗ defined by letting (Y ⊔X Z)i
be the pushout Yi ⊔Xi−1 Zi, i.e. the pushout of the span
Yi

ιi−1◦fi−1←−−−−−− Xi−1
ιi−1◦gi−1−−−−−−→ Zi.

Inclusions: The inclusions (Y ⊔X Z)i → (Y ⊔X Z)i+1 are
the obvious maps induced by the corresponding inclusions for
X∗, Y∗ and Z∗.
Cells: We define the cell cardinalities cY⊔XZ

∗ in terms of those
of X∗, Y∗ and Z∗ by letting cY⊔XZ

i = cYi + cZi + cXi−1.
Attaching maps: Finally, we define the attaching maps as

αY⊔XZ
i :

∑
c∈{cYi+1,c

Z
i+1,c

X
i } Si × Fin(c) → Yi ⊔Xi−1 Zi

αY⊔XZ
i := υi + ζi + χi

where we define υi := inl ◦ αY
i , ζi := inr ◦ αZ

i , and
χi : Si × Fin(cXi ) → Pi is defined by Si-induction: on point
constructors by setting χi(north, y) := inl (fi+1(cell y)) and
χi(south, y) := inr (gi+1(cell y)), and on the path constructor
by letting apχi(−,y)(merid x) be the composite path

inl (...)
apinl l−−−→ inl (...)

push (αX
i−1(x,y))−−−−−−−−−−→ inr (...)

apinr r
−1

−−−−−→ inr (...)

where l : fi(cell y) = ιi−1(fi−1(α
X
i−1(x, y))) and is defined

by l := apfi(glue(x, y)
−1) · hi−1(α

X
i−1(x, y)), and similarly

for r : gi(cell y) = ιi−1(gi−1(α
X
i−1(x, y))).

Proposition 10. Definition 9 satisfies A1 and A2 .

Proof. The proof mostly follows from the 3×3 lemma. The
interested reader can consult the formalised version.

Note that the colimit of this definition is the expected pushout:

colim
i→∞

(
Y ⊔X Z

)
i
= colim

i→∞

(
Yi ⊔Xi−1 Zi

)
≃ Y∞ ⊔X∞ Z∞

and thus Definition 9 does indeed provide a CW structure
for the pushout of a span in CWstr. Now, if we want to
extend this construction to the category CW, we need to work
with arbitrary maps between the colimits instead of cellular
maps. This is one out of a handful places where cellular
approximation is needed.

B. Finite structures and the cellular approximation theorem

In classical algebraic topology, the cellular approximation
theorem is a cornerstone result which states that any contin-
uous function between two CW complexes is homotopic to a
cellular map. This seems perfect for, for instance, extending
our constructions of pushouts to CW, but unfortunately this
theorem appears to be out of reach in our constructive frame-
work: the standard proof involves considerations of point-set
topology and the use of the axiom of choice. However, what
we can prove is a synthetic and finitary version of the theo-
rem, which informally states that the cellular approximation
theorem holds when the domain has finitely many cells. This
will be the main result of this subsection.

Before providing the precise statement for our constructive
cellular approximation theorem, let us start with a brief
digression about finite subcomplexes and substructures – this
will allow us to formulate a statement that is somewhat more
flexible than the one suggested above. We say that a CW
structure is finite (of dimension n) if the maps in its underlying
sequence of types are equivalences starting from dimension n.

https://github.com/caripoulet974/cellular_methods/blob/main/cubical-reduced_homology/Cubical/cellular-main/paper.agda


Given any CW structure X∗, there is a canonical way to restrict
it to a finite CW structure X(n)

∗ with the following definitions:

X
(n)
i :=

{
Xi if i < n

Xn otherwise
c
(n)
i :=

{
ci if i ≤ n
0 otherwise.

The structure X(n)
∗ trivially satisfies X(n)

∞ ≃ Xn. We will use
the same notation for cellular maps and cellular homotopies,
writing f

(n)
∗ and p

(n)
∗ respectively for the restrictions of a

cellular map f∗ and a cellular homotopy p∗ to the n-skeleton of
the domain. For ease of notation, we also define X(∞)

∗ := X∗
(and similarly for f (∞)

∗ and h(∞)
∗ ).

Definition 11. Let X∗ and Y∗ be two CW structures, and let
f : X∞ → Y∞ be an arbitrary map between their colimits. A
cellular n-approximation of f is the data of a cellular map
(f∗, h∗) : X

(n)
∗ → Y∗ along with a homotopy

t : (x : Xn)→ f(ι∞x) = ι∞(fn x).

Our first cellular approximation states that n-approximations
always exist for n finite. To get there, we will need the help
of two easy lemmas.

Lemma 12. For any CW structure X∗, the inclusion map
ιi : Xi → Xi+1 is (i− 1)-connected.

Proof. It is a general fact that given any span B
f←− A

g−→ C,
the map inl : B → B ⊔A C is as connected as g [2, Proposition
2.3.10]. In our case, Xi+1 is defined as the pushout of the span
Xi ← Si × Fin(ci+1)

snd−−→ Fin(ci+1), and thus it suffices to
show that the projection snd : Si × Fin(ci+1) → Fin(ci+1) is
(i − 1)-connected. This is evident as its fibres are equivalent
to Si, which is (i− 1)-connected.

Lemma 13. For any CW structure X∗, the inclusion map
ι∞ : Xi → X∞ is (i− 1)-connected.

Proof. It follows immediately from Lemma 12 that all of the
maps Xi+k

ιi+k−−−→ Xi+k+1 are at least (i− 1) connected. As a
consequence, their transfinite composition ι∞ : Xi → X∞ is
also (i− 1)-connected [9, Corollary 7.7].

Theorem 14 (First cellular approximation theorem). Let X∗
and Y∗ be CW structures. For any map f : X∞ → Y∞ and
n : N, there merely exists a cellular n-approximation of f .

Proof. The proof proceeds by induction on n. The base case,
n = −1, is trivial. For the inductive step, assume that we
have an n-approximation f ′∗ of f . We will use f ′∗ to merely
construct an (n + 1)-approximation f∗ : X

(n+1)
∗ → Y∗ (the

fact that we are only aiming for mere existence allows us to
use the elimination rule for propositional truncations a finite
number of times). We define fi := f ′i for all i ≤ n. It remains

to define fn+1 and its associated homotopies. Consider the
following (not necessarily commutative) diagram:

Sn × Fin(cXn+1) Fin(cXn+1)

Xn Yn

Xn+1 Yn+1

Y∞

αX
n f ′

n◦α
X
n (⋆Sn ,−)

f ′
n

ιn
ιn◦f ′

n
ιn

f◦ι∞

If we can construct fn+1 as the dashed map above in a way
that makes all triangles commute, we are done. By the elimina-
tion principle of pushouts, the dashed map exists if we can fill
the shaded area. In other words we need construct an element
of type ∥((x, y) : Sn × Fin(cn+1))→ F (x, y) = F (⋆, y)∥−1

for F := ιn ◦ f ′n ◦ αX
n . Using finite choice and Lemma 4,

this corresponds to constructing, for every y : Fin(cn+1), a
family of paths (x : Sn) → ∥F (x, y) = F (⋆, y)∥n−1. By
Lemma 13, the map ι∞ : Yn+1 → Y∞ is n-connected
and therefore its action on path spaces, apι∞ , is (n − 1)-
connected. Thus ∥F (x, y) = F (⋆, y)∥n−1 is equivalent to
∥ι∞(F (x, y)) = ι∞(F (⋆, y))∥n−1. Since the dotted area of
the diagram commutes, it suffices to show that the outermost
diagram commutes, which is a consequence of the homotopies
associated with f ′∗. Therefore, the dashed map exists. The
remaining homotopy involved in the definition of a cellular
approximation holds by construction.

Corollary 15. For any span of CW complexes Y
f←− X g−→ Z

with X finite, the pushout Y ⊔X Z is a CW complex.

Unfortunately, our finitary approximation theorem is not
quite strong enough to prove the existence of all pushouts
in CW. One option to remedy this would be to assume the
axiom of countable choice, which allow us to deduce the mere
existence of an ∞-approximation from the mere existence of
a n-approximation for every n. This would, however, limit the
generality of our theorems (countable choice does not hold in
arbitrary infinity toposes), so we will refrain from doing so.

Question 16. Can we prove that every map between CW
complexes merely has an ∞-approximation without using the
axiom of countable choice?

Since we do not know the answer to this question, we will
have to work with finite cellular approximations for the rest of
this paper. For this purpose, we introduce a category CW(n)

of n-truncated CW complexes.

Definition 17. A n-truncated CW complex is a n-truncated
type A for which there merely exists a CW structure X∗ of
dimension n+ 1 such that A ≃ ∥Xn+1∥n.

Note the mismatch between the dimension of the structure
and the truncation level. This mismatch is here so that we
may define a truncation functor truncn from CW to CW(n):
we can send the pair (A, |X∗|) to (∥A∥n, |X

(n+1)
∗ |), and the

isomorphism condition holds because ∥X∞∥n ≃ ∥Xn+1∥n.



We also introduce a corresponding category CWstr(n) whose
objects are CW structures of dimension n + 1, and whose
morphisms are cellular maps of dimension n.

C. Cellular homotopies and the 2nd approximation theorem

In essence, the first cellular approximation tells us that there
merely exists an inverse to the colimit operation for finite
cellular maps. This already lets us transfer some constructions
from CWstr to CW, but we would ideally like to get rid of that
propositional truncation and define a proper approximation
functor from CW to CWstr – or at least from CW(n) to
CWstr(n), to avoid choice issues. Unfortunately, this turns out
to be problematic, as the cellular approximation theorem is
inconsistent without the propositional truncation.

Theorem 18. The set-truncated version of Theorem 14 is false.

Proof. Both 1 and S1 can be presented by finite CW structures
(which we will denote by 1∗ and S1∗), with only a 0-cell for
the former and a 0-cell plus a 1-cell for the latter. Given any
x : S1, define x̂ : 1 → S1 to be the corresponding function.
A cellular approximation of x̂ means that we can factors it
as 1 ∼−→ 10

x̂0−→ S10 → S1, which in turn implies that x is
equal to the basepoint ⋆S1 . Therefore, the set-truncated version
of Theorem 14 provides a proof of (x : S1) → ∥x = ⋆S1∥0.
By Lemma 4, this entails ∥(x : S1)→ x = ⋆S1∥−1 which by
truncation elimination implies that S1 is contractible. But this
is provably false in HoTT [10].

This problem ultimately stems from a mismatch between
the notion of equality for morphisms in CW and the notion of
equality for morphisms in CWstr. Since any homotopy gives
rise to an equality between maps, the morphisms in CW should
be understood as maps up to homotopy, while the equality
between morphisms in CWstr is much closer in spirit to a strict
equality. Therefore, if we want to frame our approximation
theorem as functor, we need to quotient the morphisms of the
target category by an adequate notion of homotopy.

Definition 19. A cellular homotopy between cellular maps
f∗, g∗ : X∗ → Y∗ is a family

pi : (x : Xi)→ ιi(fi(x)) =Yi+1
ιi(gi(x))

with fillers qi x, for each i > 0 and x : Xi, of the following
square.

ιi+1(fi+1(ιi x)) ιi+1(gi+1(ιi x))

ιi+1(ιi (fi x)) ιi+1(ιi (gi x))

pi+1(ιi x)

apιi+1
(pi x)

qi x

We use the notation (p∗, q∗) : f∗ ∼ g∗ or simply p∗ : f∗ ∼ g∗
when the qi’s are clear from context.

One can easily prove that composition of cellular maps is
invariant with respect to cellular homotopy. This lets us define
the category Ho(CWstr), whose objects are CW structures and
whose morphisms are cellular maps up to cellular homotopy.
Furthermore, the existence of a cellular homotopy between f∗
and g∗ implies that their colimits are homotopic, or in other

words, that f∞ = g∞. This means that the colimit functor
factors through Ho(CWstr).

That new colimit functor almost induces an equivalence
between the categories CW(n) and Ho(CWstr(n)). In order to
prove this, we will need to extend our approximation theorem
to cellular homotopies. Because the caveats regarding the
axiom of countable choice still apply, we start by introducing
a notion of finite approximation for cellular homotopies.

Definition 20. Let f∗, g∗ : X∗ → Y∗ be two cellular maps,
and let p : (x : X∞) → f∞(x) = g∞(x) be a homotopy
between their colimits. A cellular n-approximation of p is a
cellular homotopy p∗ : f

(n)
∗ ∼ g

(n)
∗ equipped with a filler of

the following square for each x : Xn.

ι∞(ιn(fn(x))) ι∞(ιn(gn(x)))

f∞(ι∞ x) g∞(ι∞ x)

apι∞ (pn(x))

p(ι∞ x)

We are now ready to state the second cellular approximation
theorem. Its proof follows the same strategy as Theorem 14, so
we omit it and refer the reader to the computer formalisation.

Theorem 21 (Second cellular approximation theorem). Let
f∗, g∗ : X∗ → Y∞ be cellular maps and p : f∞ ∼ g∞. For
any n : N, there merely exists an n-approximation of p.

Theorem 21 implies that taking the colimit of a cellular map
between two CW structures in Ho(CWstr(n)) is an injective
operation. On the other hand, Theorem 14 implies that it
is a surjective operation. Therefore, the colimit induces a
fully faithful functor from Ho(CWstr(n)) to CW(n). Since this
functor is essentially surjective in the sense of [1, Chapter 9],
we get the following result as a corollary.

Corollary 22. The colimit functor induces a weak equivalence
between Ho(CWstr(n)) and CW(n). Equivalently, CW(n) is the
Rezk completion of Ho(CWstr(n)).

CW Ho(CWstr) CWstr

CW(n) Ho(CWstr(n)) CWstr(n)

colim

truncntruncn truncn

colim

∼

Fig. 1. The categories at play

The relations between the various categories defined so
far are summarised in Figure 1. This diagram gives us a
systematic way of lifting a functor F defined over CWstr to
a functor defined over CW: first, if the functor F happens
to use only a finite number of dimensions, it can be factored
as F ◦ truncn for some functor F defined over CWstr(n).
Then, if we manage to prove that F is invariant under cellular
homotopy, we can extend it to a functor F̃ defined over
Ho(CWstr(n)). Finally, if the target is a univalent category, F̃
can be extended to a functor defined over the Rezk completion
of Ho(CWstr(n)), which is CW(n). By composing the result
with the truncation functor, we get a lift of F to CW.
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IV. CELLULAR HOMOLOGY

In algebraic topology, the homology groups of a space is a
family of topological invariants which are somewhat similar to
homotopy groups, in that they intuitively measure the number
of n-dimensional holes, but are much simpler to compute.
There is a plethora of homology theories (roughly, different
definitions for these homology groups) but among them, one
is especially relevant to our interests: the theory of cellular
homology is defined in terms of their CW structures, and is
particularly well suited for computation. Developing cellular
homology in HoTT gives a new meaning to the adjective
computational. Through the Curry-Howard correspondence, it
provides formally verified computations of homology groups,
facilitating the idea of ‘proof by computation’ – a central idea
in computer formalisation of synthetic homotopy theory [2],
[11], [12], [13].

In this section, we define a (reduced) homology functor
H̃str

i : CWstr → AbGrp which we then lift to a functor
H̃cw

i over CW using our freshly proved cellular approximation
theorem. This provides the first complete definition of cellular
homology in HoTT. We also state the Eilenberg-Steenrod
axioms and prove that our functors satisfy them, thereby
showing that they deserve the name of a homology theory.

A. A crash course in homological algebra

The first step in the definition of homology groups is to
approximate CW structures by cellular chain complexes. Be-
fore doing so, however, we need some preliminary background
on chain complexes, as well as a definition of the homology
groups of a chain complex.

Definition 23. A chain complex is a sequence of abelian
groups (called i-chains)

. . .
∂2−→ C1

∂1−→ C0
∂0−→ C−1

∂−1−−→ . . .

where the maps ∂i (called boundary maps) are group homo-
morphisms satisfying the equation ∂i ◦ ∂i+1 = 0.

Definition 24. A chain map ϕ∗ : C∗ → D∗ is a collection
of group homomorphisms ϕi : Ci → Di compatible with
boundary maps in the sense that ϕi ◦ ∂Ci+1 = ∂Di+1 ◦ ϕi+1.

There are natural definitions of chain map composition
(levelwise composition) and of the identity chain map (the
levelwise identity). This lets us define the category Ch whose
objects are chain complexes and whose morphisms are chain
maps. We also have a natural notion of chain homotopy.

Definition 25. A chain homotopy η∗ between two chain maps
ϕ∗, ψ∗ : C∗ → D∗ is a sequence of group homomorphisms
ηi : Ci → Di+1 such that ϕi − ψi = ∂Di+1 ◦ ηi + ηi−1 ◦ ∂Ci .

Chain homotopies are compatible with composition, which
lets us define the homotopy category of chain complexes
Ho(Ch) whose morphisms are chain maps up to chain homo-
topy. We finally arrive at the definition of homology groups,
which is the natural analogue of homotopy groups in the
category of chain complexes.

Definition 26 (Homology groups). We define the nth ho-
mology group of a chain complex (C∗, ∂∗) by Hn(C∗) :=
ker ∂n/ Im ∂n+1.

We remark that the quotient in the definition above is well-
defined since the boundary equation ∂i ◦ ∂i+1 = 0 ensures that
Im ∂i+1 ⊆ ker ∂i. Furthermore, any chain map ϕ∗ : C∗ → D∗
induces a homomorphism Hn(ϕ∗) : Hn(C∗)→ Hn(D∗), and
furthermore does so in a functorial way. Thus, the definition
of the nth homology group can be presented as a functor
from Ch to the category of abelian groups AbGrp. Lastly,
a standard argument shows that the existence of a chain
homotopy between two chain maps ϕ∗ and ψ∗ implies that
Hn(ϕ∗) ∼= Hn(ψ∗). Therefore, the definition of Hn factors
through the category Ho(Ch). This concludes our definition
of the homology groups of a chain complex.

B. Sphere bouquets and reduced cellular homology

We are now in position to define the cellular chain complex
associated to a CW structure X∗. The definition for the abelian
groups of n-chains is rather straightforward:

• when n ≥ 0, we set Cn := Z[cXn ], i.e. Cn is the free
abelian group with a generator for each n-cell in X∗,

• when n = −1, we set C−1 := Z (in technical terms, this
means that we are defining the augmented chain complex
of X∗, but we will not go into detail here),

• when n < −1, we define Cn to be the trivial group.
The definition of the boundary maps is slightly more involved.
In positive degrees, our goal is to construct a homomorphism
of free abelian groups ∂i+1 : Hom(Z[cXi+1],Z[cXi ]). To do so,
we will exploit the fact that free abelian groups are closely
related to wedge sums of spheres, which we call sphere
bouquets. This approach is essentially a reinterpretation of the
definition used by May [14] and Buchholtz and Favonia [5].
In what follows, and for the remainder of the paper, we will
use somewhat non-standard terminology and say that a type
A is finite if A ≃ Fin(k) for some k.

Definition 27. Given a finite type A and an integer n ≥ 0,
define the sphere bouquet of cardinality |A| and dimension n
to be the type

∨
A Sn, i.e. the wedge sum of |A| n-spheres.

Before clarifying the relation between sphere bouquets and
free abelian groups, we first need to recall some well-known
facts about the degree of an endo-function of Sn. For any
n > 0, there is an isomorphism deg from πn(Sn) to Z. In
fact, this definition extends to any (not necessarily pointed)
map f : Sn → Sn. This is done by noting that the ‘forgetful
map’ ∥fst∥0 : πn(Sn)→ ∥Sn → Sn∥0 is an equivalence. This
allows us to define a degree map by the composition

(Sn → Sn) |−|−−→ ∥Sn → Sn∥0
∥fst∥−1

0−−−−→ ∥Sn →⋆ Sn∥0
deg−−→ Z

We allow some overloading of notation by also using deg
to denote the above composition. In addition to inducing an
isomorphism of groups, deg has a few useful properties.



Proposition 28. The degree map commutes with suspensions,
i.e. any f : Sn → Sn is of the same degree as its suspension
Σ f : Sn+1 → Sn+1. Additionally, deg takes function compo-
sition to integer multiplication, i.e. deg(f ◦ g) = deg f ·deg g.

As the degree map has been well-studied in HoTT al-
ready [5], [15], we omit the proof of Proposition 28. This
degree function has a natural generalisation to sphere bou-
quets, which we call the bouquet degree function (bdeg). It is
defined by the following composition of arrows:

(
∨

A Sn →
∨

B Sn) ΠAΠB(Sn → Sn)

(ΠASn →
∨

B Sn) ΠAΠBZ

(ΠASn → ΠBSn) Hom(Z[A],Z[B])

ι∨
∗

(deg∗)∗

∼

where the last two equivalences are defined using the universal
property of the free abelian group. The bouquet degree map
immediately inherits properties corresponding to those listed
in Proposition 28:

Proposition 29. Let A,B and C be finite types, n ≥ 0. The
following facts hold.

1) The bouquet degree function induces a group homomor-
phism

∥∥∨
A Sn+1 →

∨
B Sn+1

∥∥
0
→ Hom(Z[A],Z[B]),

where the group structure on the left hand side is the
natural extension of the group structure on πn+1(Sn+1).

2) The bouquet degree function commutes with suspension,
i.e. any f : (

∨
A Sn →

∨
B Sn) is of the same degree as

its suspension Σ f : (Σ(
∨

A Sn)→ Σ(
∨

B Sn)), where
the bouquet degree of the latter function is well-defined
since Σ(

∨
X Sn) ≃

∨
X Sn+1 for any X .

3) The bouquet degree function respects composition, i.e. for
f :

∨
A Sn →

∨
B Sn and g :

∨
B Sn →

∨
C Sn we have

bdeg(g ◦ f) = bdeg g ◦ bdeg f .

We can now return to the construction of the boundary
maps: we would like to define, for any CW structure X∗,
a homomorphism ∂i+1 : Z[cXi+1] → Z[cXi ]. By applying our
bouquet degree function, it suffices to construct a function
di :

∨
Fin(cXi+1)

Si+1 →
∨

Fin(cXi ) Si+1. We recall from [5] that
there is an equivalence e : Xi/Xi−1 ≃

∨
Fin(cXi ) Si. When

i > 0, we obtain it by considering the following diagram.

Si−1 × Fin(cXi ) Xi−1 1

Fin(cXi ) Xi Σ(
∨

Fin(cXi ) Si−1)

αX
i−1

⌟

Since the outermost square is a pushout, we know, by pushout
pasting, that so is the right square. The construction of e is
completed by observing that suspension commutes with wedge
sums. When i = 0, the equivalence is obtained by noting that
X0/X−1 ≃ X0 + 1 which allows us to identify the appended
point with the basepoint in

∨
Fin(cX0 ) S0. We may now construct

the desired map di+1 by considering the composition

∨
Fin(cXi+1)

Si+1 ∼−→Xi+1/Xi
pinch−−→ ΣXi

Σcfcod−−−→ Σ(Xi/Xi−1)
∼−→

∨
Fin(cXi )

Si+1

and finally, we set ∂i+1 = bdeg di+1. Note that this whole
construction is only valid for i > −1. To complete the
definition, we define ∂0 : Z[cX0 ] → Z by sending every
generator of Z[cX0 ] to 1, and lastly we let the maps in negative
dimension be trivial.

Proposition 30. The boundary maps satisfy ∂i ◦ ∂i+1 = 0.

Proof. First, assume that i > 0. We compute:

∂i ◦ ∂i+1 = bdeg di ◦ bdegdi+1 = bdeg (Σdi) ◦ bdeg (di+1)

= bdeg(Σdi ◦ di+1)

We are done if we can show that Σdi ◦ di+1 = 0. This
composition of maps is defined as follows.∨
cXi+1

Si+1 Xi+1/Xi ΣXi Σ(Xi/Xi91)
∨
cXi

Si+1

Σ
∨
cXi

Si Σ(Xi/Xi91) Σ2Xi91 Σ2(Xi91/Xi92) Σ
∨
cXi91

Si

It is enough to show that the dashed composition ΣXi →
Σ2Xi−1 is trivial. By tracing the construction of the maps
involved, it is easy to see that the map is given by

ΣXi
Σcfcod−−−−→ ΣXi/Xi−1

Σpinch−−−−→ Σ2Xi−1

which is equal to functorial action of Σ on pinch ◦ cfcod :
Xi → ΣXi−1. This is constant by definition. The case i = 0
follows by an explicit computation of the maps ∂1 and ∂0.

At this point, we have a proper definition for the cellular
chain complex of a CW structure. It remains to show that this
construction lifts to a functor from CWstr to Ch.

Let f∗ : X∗ → Y∗ be a cellular map. Because f∗ is cellular,
it determines a map Xi/Xi−1 → Yi/Yi−1. With a bit of help
from the equivalence e that we defined earlier, we can define
a map of sphere bouquets f̃i as follows:∨

Fin(cXi ) Si
e−1

−−→ Xi/Xi−1
fi/fi−1−−−−−→ Yi/Yi−1

e−→
∨

Fin(cYi ) Si.

We may thus define the functorial action of f on i-chains,
f i : Hom(Z[cXi ],Z[cYi ]), by setting f i = bdeg f̃i. Let us verify
that it is a chain map, i.e. that ∂i+1 ◦ f i+1 = f i ◦ ∂i+1. Using
the fact that bdeg respects suspension and composition, this is
equivalent to bdeg (di+1 ◦ f̃i+1) = bdeg(Σf̃i ◦ di+1). Let us
simply show that di+1 ◦ f̃i+1 = Σf̃i ◦ di+1. That is, we will
show that the outer square commutes in the diagram below:∨

cXi+1

Si+1 Xi+1/Xi ΣXi Σ(Xi/Xi91)
∨
cXi

Si+1

∨
cYi+1

Si+1 Yi+1/Yi ΣYi Σ(Yi/Yi91)
∨
cYi

Si+1

f̃i+1 fi+1/fi Σfi Σfi/fi−1 Σf̃i

This is immediate: the leftmost and rightmost squares com-
mute by construction of our functorial action, and the middle
squares commute by definition.



Thus, we have shown that any cellular map f∗ : X∗ → Y∗
gives rise to a chain map between the cellular chain complexes
of X∗ and Y∗. Due to space constraints, we omit the proofs
that this operation satisfies the two functor axioms, but we note
that they are very direct. This results in a functor cellChain :
CWstr → Ch. If we compose this functor with the nth
homology functor Hn : Ch → AbGrp, we obtain a functorial
definition of reduced cellular homology for CW structures. We
denote the resulting functor by H̃str

n : CWstr→ AbGrp.

C. The homology of a CW complex

Our end goal is to extend our cellular homology functor
to the category of CW complexes. To do so, we follow the
strategy laid out in Figure 1: first, we will need a lemma to
show that cellular homology is homotopy invariant.

Proposition 31. Let f∗ and g∗ be two parallel cellular maps.
Every cellular homotopy between f∗ and g∗, induces a chain
homotopy between cellChain(f∗) and cellChain(g∗).

The proof is standard but somewhat technical. Due to space
constraints, we omit it and refer to the computer formalisation.
Proposition 31 implies that cellChain descends to a functor
from Ho(CWstr) to Ho(CW). As we already saw, the chain ho-
mology functor Hn factors through Ho(CWstr), meaning that
we can compose it with cellChain to express cellular homology
as a functor H̃str

n : Ho(CWstr)→ AbGrp. Therefore, we have
established that cellular homology is homotopy invariant.

In fact, its definition makes it clear that H̃str
n (X∗) only

depends on the (n+1)-skeleton of X∗, so H̃str
n can actually be

defined as a functor from Ho(CWstr(n+1)) to AbGrp. Since
abelian groups form a univalent category, H̃str

n can even be
extended to the Rezk completion of Ho(CWstr(n+1)), which is
CW(n+1). Composing the resulting functor with the truncation
functor from CW to CW(n+1) yields the desired definition of
the cellular homology functor H̃cw

n : CW→ AbGrp.

D. The Eilenberg-Steenrod axioms

To be deserving of the title of a homology theory, our
definition should satisfy the Eilenberg-Steenrod axioms. How-
ever, this raises yet another constructivity issue: the classical
formulation of these axioms involves wedge sums indexed
by arbitrary sets, which do not exist in our category of CW
structures. To remedy this, we will define a finitary version of
the axiom1. In what follows, CWstr⋆ denotes the category of
pointed CW structures.

Definition 32 (Eilenberg-Steenrod homology). A reduced
homology theory is a Z-indexed family of functors Ẽn :
CWstr⋆ → AbGrp satisfying the following axioms.

Suspension: For any n, there is an isomorphism Ẽn(X∗) ∼=
Ẽn+1((ΣX)∗) which is natural in X .

1It is also possible to allow for more general families of sets, as done by e.g
Cavallo [16] and Buchholtz and Favonia [5]. We choose the finitary version
for the sake of simplicity but note that the proofs differ little, should one wish
to be more general.

Exactness: For any cellular map f∗, the sequence

Ẽn(X∗)
Ẽn(f∗)−−−−→ Ẽn(Y∗)

Ẽn(cfcod∗)−−−−−−−→ Ẽn((Cf )∗)

is exact, meaning that ker Ẽn(cfcod∗) = Im Ẽn(f∗).

Dimension: Ẽn(S0∗) is trivial for n ̸= 0 and isomorphic to Z
when n = 0.

Binary additivity: For any X∗, Y∗ : CWstr⋆, the canonical
map Ẽn(X∗)⊕ Ẽn(Y∗)→ Ẽn((X ∨Y )∗) is an isomorphism.

An important point is that we decided to define the
Eilenberg-Steenrod axioms over CWstr⋆ rather than CW⋆.
The reason for this is that the exactness axiom involves
cofibres of arbitrary maps, which are not guaranteed to exist
in the category CW⋆ (see the discussion around Corollary 15).
Nevertheless, we do get a restricted exactness axiom for H̃cw

n

which involves only maps with a finite domain as a conse-
quence of the exactness of H̃str

n . Before we prove exactness,
however, let us show that the suspension axiom is satisfied.

Proposition 33. The suspension axiom is satisfied by H̃str
n .

Proof. Let (CX
∗ , ∂

X
∗ ) and (CΣ

∗ , ∂
Σ
∗ ) be the augmented chain

complexes associated to X∗ and (ΣX)∗ respectively. Let
(ĈΣ

∗ , ∂̂
Σ
∗ ) := (CΣ

∗+1, ∂
Σ
∗+1) be the latter complex shifted by

1, and denote its chain homology groups by H̃Σ
n . We have

H̃Σ
n = H̃str

n+1((ΣX)∗) by construction. We construct a chain
map φ∗ : ĈΣ

∗ → CX
∗ as follows:

Z[cn] Z[c0] Z[2]

. . . ĈΣ
n . . . ĈΣ

0 ĈΣ
−1 Z

. . . CX
n . . . CX

0 CX
−1 1

Z[cn] Z[c0] Z

∂̂n+1 ∂̂n

φn

∂̂1 ∂̂0

φ0

∂̂−1

φ−1 φ−2

∂n+1 ∂n ∂1 ∂0

We simply set φn to be the identity when n ≥ 0, and let
φ−1 be the map forgetting the second generator. The fact
that the squares commute is a direct consequence of Propo-
sition 29, apart from the second square from the right whose
commutativity follows by construction of ∂̂0. Thus φn induces
an isomorphism ϕn : H̃str

n+1((ΣX)∗) = H̃Σ
n → H̃str

n (X∗)
on homology when n ≥ 1. Naturality is immediate as the
isomorphism is induced by the identity. When n = 0, we need
to be somewhat more careful since ∂̂0 and ∂0 have different
codomains. Nonetheless, their kernels trivially agree and so
we still obtain the desired isomorphism on homology. The
final non-trivial case we need to check is when n = −1. This
case amounts to showing that H̃Σ

−1 is trivial which follows
immediately by construction of ∂̂0 and ∂̂−1.

Let us continue with the exactness axiom. For this, we
need to characterise the behaviour of the boundary map on
pushouts. The proof, which we have to omit here due to
space constraints, proceeds by unfolding the definition of the
attaching maps in Definition 9 and some direct but tedious
computations.

https://github.com/caripoulet974/cellular_methods/blob/main/cubical-reduced_homology/Cubical/cellular-main/paper.agda


Lemma 34. Let P∗ be the cellular pushout of some span
Y∗

f∗←− X∗
g∗−→ Z∗. The boundary map ∂Pn+1 factors as

Cp
n+1

∼−→ CX
n ⊕ CY

n+1 ⊕ CZ
n+1

∂′
n+1−−−→ CX

n−1 ⊕ CY
n ⊕ CZ

n
∼−→ CP

n

where ∂′n+1(x, y, z) := (−∂Xn x, ∂Yn+1 y+fn x, ∂
Z
n+1 z−gn x).

Proposition 35. The exactness axiom is satisfied by H̃str
n .

Proof. The fact that Im (H̃str
n (f∗)) ⊆ ker (H̃str

n (cfcod∗))
follows from the functoriality of H̃str

n and the fact that
cfcod∗ ◦ f∗ is constant by definition of (Cf )∗. For the other
direction, let [y] : H̃str

n (Y∗) be an equivalence class (where
y : CY

n ) and assume it is in the kernel of the composite

map CY
n

cfcodn
↪−−−−→ Ccof

n
q−→ Ccof

n /∂cofn+1. A quick computation
reveals that the group Ccof

n is equal to CX
n−1 ⊕CY

n ⊕ 1n, and
that cfcodn y is equal to (0, y, 0). Therefore, our assumption
is equivalent to (0, y, 0) being in the image of ∂cofn+1. Using
Lemma 34, this means that y = ∂Yn+1 y0 + fn x for some
y0 : CY

n+1 and x : CX
n . Thus, [y] = [fn x] in H̃str

n (Y∗). Since
[fn x] = H̃str

n (f∗)[x], we are done.

Proposition 36. The dimension axiom is satisfied by H̃str
n .

Proof. The augmented chain complex associated to S0 is

. . .
∂3−→ 1

∂2−→ 1
∂1−→ Z[2] ∂0−→ Z ∂−1−−→ 1

∂−2−−→ 1
∂−3−−→ . . .

The homology of this complex is clearly concentrated in
degree 0 with H̃str

n (S0) ∼= Z.

Proposition 37. Binary additivity is satisfied by H̃str
n .

Proof. The direct sum H̃str
n (X∗)⊕ H̃str

n (Y∗) can be viewed as
the homology of the chain complex (CX

n ⊕ CY
n , ∂

X
n ⊕ ∂Yn ).

Under this identification, the map H̃str
n (X∗) ⊕ H̃str

n (Y∗) →
H̃str

n ((X ∨ Y )∗) corresponds to the chain map

. . . CY
n ⊕ CZ

n CY
n ⊕ CZ

n . . .

. . . C1

n ⊕ CY
n+1 ⊕ CZ

n+1 C1

n91 ⊕ CY
n ⊕ CZ

n . . .

∂Y
n ⊕∂Z

n

0⊕∂Y
n ⊕∂Z

n

where the bottom row is the reduced cell complex associated
to (X ∨ Y )∗ using the cell structure for pushouts. The
computation of the boundary map comes from Lemma 34. As
C1

n vanishes for n ≥ 2, the vertical maps are isomorphisms
for in these dimensions and hence we obtained the desired
isomorphism of homology in groups. The additional 0-cell in
(X∨B)0 affects the computation forces us to construct the in-
verse of the prospective isomorphism explicitly in dimensions
n = 1 and n = 0. The construction is completely standard
and we refer to the computer formalisation for details.

Theorem 38. The functor H̃str
n : CWstr⋆ → AbGrp is an

ordinary reduced homology theory.

Finally, we arrive at the corresponding result for H̃cw
n (where

the notion of exactness is restricted to mention only those
pushouts which exist in CW⋆).

Corollary 39. The functor H̃cw
n : CW⋆ → AbGrp is an

ordinary reduced homology theory.

Some care has to be taken when inferring Corollary 39
from Theorem 38. As H̃cw

n concerns the homology of arbitrary
types merely equipped with a CW structure, we are only
able to automatically infer the two axioms which happen to
be propositions, namely exactness and binary additivity. The
dimension axiom follows because it concerns S0, a closed type
for which we have an explicit CW structure. Finally, we need
to take care of the suspension axiom. Its statement is a set
and not a proposition, which prevents us from using the usual
elimination principle for truncations, but we can instead use
the set elimination principle of Kraus [17, Chapter 8.1.1]. We
need to prove the theorem whenever X has an explicit CW
structure (using Theorem 38), and then show that the proof
does not depend on the choice of CW structure, which is a
direct consequence of naturality.

V. PART 4: THE HUREWICZ THEOREM

As previously mentioned, homology groups are quite similar
in spirit to homotopy groups, so one might hope that the two
notions are connected in some way. The answer lies in the
Hurewicz theorem, which states that if a space is n-connected,
then its homology groups coincide with its homotopy groups
up to dimension n+1 (up to abelianisation in the case n = 0).

A. Approximating n-connected spaces

The classical proof of the Hurewicz theorem for cellular
homology takes an arbitrary n-connected CW complex, and
replaces its CW structure with an alternative one with no
nontrivial cells in dimension < n+1. This is done by defining
the new set of (n+1) cells to be the (n+1)-th homotopy group
of the space, from which the Hurewicz theorem will follow.
Unfortunately, this approach will not work in our framework
since the homotopy groups of a finite CW complex may
very well be infinite (think of the n-dimensional sphere). Yet,
perhaps surprisingly, we are able to give a constructive proof
of the Hurewicz theorem by using a different construction for
the alternative structure of n-connected CW complexes.

Definition 40. We say that a CW structure X∗ is Hurewicz
n-connected if cX0 = 1 and cXi = 0 for 0 < i < n. We use
the same terminology for CW complexes which merely have a
Hurewicz n-connected CW structure.

We remark that being Hurewicz n-connected is a property
(i.e. a proposition). The following lemma gives a few elemen-
tary consequences of Hurewicz n-connectedness.

Lemma 41. Let X∗ be a CW structure. If X∗ is Hurewicz
n-connected, then

1) Xi ≃ 1 for 0 ≤ i < n
2) Xn+1 ≃

∨
Fin(cn+1)

Sn+1.
3) Xi is n-connected for i ∈ {j ∈ N ∪ {∞} | j > n}

Item 3 tells us that Hurewicz n-connectedness implies the
usual notion of n-connectedness. The other direction is much
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less obvious – especially constructively. Nonetheless, we can,
in fact, prove it. As a warm up, let us tackle the case n = 0.

Proposition 42. For any 0-connected structure X∗, there is a
Hurewicz 0-connected CW structure X ′

∗ s.t. Xi=X
′
i for i≥1.

Proof. We proceed by induction on cX0 , i.e. the size of X0

(≃ Fin(cX0 )). If cX0 = 0, this contradicts the 0-connectedness
of X∗. If cX0 = 1, X∗ is already of the right form and there is
nothing to prove. Consider now the case cX0 > 1. We will be
done if we can show that X1 may be obtained as the pushout of
Fin(c′0)

α′

←− S0×Fin(c′1)
snd−−→ Fin(c′1) for some c′0, c

′
1 : N and

α′ satisfying c′0 < cX0 . Let us carry out the construction. Some
of the arguments may look non-constructive but we emphasise
that they are justified as they concern finite sets.

First, note that there must be some a0 : Fin(c1) such that
α0(north, a0) ̸= α0(south, a0). Indeed, if this were not the
case, we would have that ∥X1∥0 ≃ X0. By combining this
equation with ∥X∞∥0 ≃ ∥X1∥0, we would obtain that ∥X∞∥0
is isomorphic to X0, which is not contractible since cX0 > 1.
Now, by permuting the elements of Fin(c1) and Fin(c0),
we may assume that the last element a0 : Fin(c1) satisfies
α0(north, a0) = cX0 −1 and α0(south, a0) = cX0 −2. We define
a new attaching map α′

0 : S0 × Fin(cX1 − 1) → Fin(cX0 − 1)
by

α′
0(x, y) =

{
α0(x, y) if α0(x, y) < c0 − 1

cX0 − 2 otherwise

The 1-skeleton X ′
1 obtained by pushing out along α′

0 is easily
identified with X1, and thus we are done as we have decreased
the cardinality of the codomain of the attaching map by 1.

Before turning to higher dimensions, let us define a useful
alteration of the notion of CW structure. In what follows,
we abuse notation for the sake of convenience and interpret∨

A S−1 as the empty type rather than than the unit type.

Definition 43. A good CW structure is a pointed CW structure
X∗ whose attaching maps αi : Fin(cXi+1) × Si → Xi lift to
maps defined over sphere bouquets, i.e. for all i there exists
α′
i :

∨
Fin(cXi+1)

Si →⋆ Xi such that Xi+1 ≃ CαX
i

.

Lemma 44. Let X∗ be a good CW structure. X∗ is Hurewicz
n-connected iff Xn+1 ≃

∨
B Sn+1 and Xn+2 ≃ Cf where A

and B are finite types and f :
∨

A Sn+1 →
∨

B Sn+1.

This lemma follows immediately from the definition of good
structures and Lemma 41. We remark that good CW structures
always are 0 Hurewicz connected. The converse also holds for
simple connectedness reasons.

Proposition 45. Any finite Hurewicz 0-connected CW struc-
ture is merely good.

We are now ready to prove the main technical theorem of
which states that the synthetic standard notion of connected-
ness coincides, for CW complexes, with the more analytic
notion of Hurewicz connectedness.

Theorem 46. Let X∗ be a an n-connected CW structure. There
merely exists a Hurewicz n-connected CW structure X ′

∗ such
that Xi = X ′

i for i > n.

Proof. We proceed by induction on n. The base case is
given by Proposition 42. For the inductive step, let X∗ be
n-connected. In particular, X∗ is (n − 1)-connected, so by
induction hypothesis we may assume that it is Hurewicz
(n−1)-connected. Since n > 0, this structure is also Hurewicz
0-connected and we may assume that it is good (up to some
fixed finite dimension k >> n) by Proposition 45. Us-
ing Lemma 44, we know that Xn ≃

∨
A Sn and Xn+1 ≃ Cf

for f :
∨

B Sn →
∨

A Sn where A and B are some finite sets.
Using Lemma 44 again, we are done if we can find construct
sets A′, B′ and f ′ :

∨
B′ Sn+1 →

∨
A′ Sn+1 s.t. Xn+2 ≃ Cf ′ .

Consider the following diagram where C = Fin(cXn+2).∨
C

Sn+1
1

∨
A

Sn Cf Xn+2

1
∨
B

Sn+1 Xn+2 ∨
∨
A

Sn+1

αn+1

cfcod

⌟

⌟ ⌟

The top square is a pushout square because X(k)
∗ is a good

CW structure (we have identified Xn+1 with Cf ). The fact
that the bottom-left square is a pushout follows by the first part
of Lemma 2. The bottom right-square is less evident. Consider
the composite map

∨
A Sn → Xn+2 on the second row. Using

the fact that X∞ (and hence also Xn+2) is n-connected, it
is an easy consequence of Lemma 4 that this map is merely
constant. As we are proving a proposition, we may ignore the
word ‘merely’ and assume that it is constant. This means that
the composition of the two bottom squares is a pushout by
the second part of Lemma 2. Consequently, the the bottom-
right square is also a pushout square. Let us write β for the
map

∨
C Sn+1 →

∨
B Sn+1 that is described by the middle

column of the diagram. We have shown that Cβ ≃ Xn+2 ∨∨
A Sn+1. Another way to interpret this equivalence is that we

gave the space Xn+2∨
∨

A Sn+1 a good Hurewicz n-connected
CW structure V , with (n+1)-skeleton Vn+1 =

∨
B Sn+1 and

attaching map αn+1 = β.
Consider the inclusion inr :

∨
A Sn+1 → Xn+2 ∨

∨
A Sn+1.

This happens to be a map between CW complexes, so we may
approximate it using Theorem 14. Doing so produces a map
inrn+1 :

∨
A Sn+1 → Vn+1 =

∨
B Sn+1, which factors inr

as
∨

A Sn+1 inrn+1−−−−→
∨

B Sn+1 ιn+1−−−→ Xn+2 ∨
∨

A Sn+1. Now
consider the following diagram.∨

A

Sn+1
∨
B

Sn+1 Xn+2 ∨
∨
A

Sn+1

1 Cinrn+1
Xn+2

inrn+1

⌟ ⌟

The left square is a pushout by definition, and the total
square is a pushout for elementary reasons. Thus, the right
square is a pushout. Replacing Xn+2 ∨

∨
A Sn+1 with Cβ ,



we conclude that Xn+2 is obtained as the pushout of the
span Cinrn+1 ←

∨
B Sn+1 → Cβ . An application of the 3×3

lemma tells us that this is equivalent to cofibre of the map
inrn+1 ∨ β :

∨
A+C Sn+1 →

∨
B Sn+1. Thus, we have shown

that Xn+2 is of the desired form and we are done.

Corollary 47 (The Hurewicz Approximation Theorem). A CW
complex is n-connected iff it is Hurewicz n-connected.

B. From homotopy to homology

In order to state our final theorem, we will need the help
of the Hurewicz homomorphism. We define it using H̃cw

n , but
remark that the construction carries over to H̃str

n .

Definition 48. Let X be a CW complex. Define the Hurewicz
homomorphism2 η : πn(X) → H̃cw

n (X) on canonical ele-
ments f : Sn →⋆ X by letting η(|f |) : H̃cw

n (X) be the image
of 1 under the composition Z ∼−→ H̃cw

n (Sn) f∗−→ H̃cw
n (X).

The Hurewicz theorem will provide us with a condition for
when this homomorphism is an isomorphism. Before we state
and prove it, let us try to understand the groups involved in
the ‘simple’ special case when X is the cofibre Cf of some
map of (finite) sphere bouquets f :

∨
A Sn →

∨
B Sn. This

special case will turn out to inform the proof for the general
case. As Cf has an explicit CW structure, let us switch our
homology theory to H̃str

n . Now let us compute H̃str
n (Cf ) using

the exactness axiom: consider the sequence∨
A

Sn f−→
∨
B

Sn cfcod−−→ Cf
cfcod−−→ C(cfcod:

∨
B

Sn→Cf ) ≃
∨
A

Sn+1

where the final equivalence is the usual characterisation of
Xn+1/Xn using that Cf has a CW structure. This is a cofibre
sequence, and so the following sequence is exact

H̃str
n (

∨
A Sn) f∗−→ H̃str

n (
∨

B Sn) cfcod∗−−−→ H̃str
n (Cf )→ 0 (1)

where the final 0 comes from that fact that H̃str
n vanishes on∨

A Sn+1. We can compute the first two homology groups
using additivity, and thus we see that H̃str

n (Cf ) ∼= Z[B]/Z[A].
Let us now compute the domain of η, i.e. the group πn(Cf ).

Proposition 49. For any f :
∨

A Sn →
∨

B Sn where n ≥ 1
and A and B are finite types, there is an exact sequence

πn (
∨

A Sn) f∗−→ πn (
∨

B Sn) cfcod∗−−−−→→ πn(Cf ).

Proof. This follows from the Seifert-Van Kampen theorem [1,
Example 8.7.17] in the case n = 1, and from the Blakers-
Massey theorem [18] in the case n > 1. For details, we refer
to the formalisation.

We are now almost ready for the Hurewicz theorem. In
order to state it, let us define πab

n to be the abelianisation of
the homotopy group functor, i.e. πab

n (X) := πn(X)/ Im [−,−]
where [−,−] : πn(X)× πn(X)→ πn(X) is the commutator
defined by [x, y] = xyx−1y−1. As higher homotopy groups
are already abelian, the quotient map πn(X)→ πab

n (X) is an

2The fact that this map is a homomorphism boils down to the easy fact
that the multiplication of cellular maps Sn →⋆ X is again cellular.

isomorphism; in what follows, we will simply interpret πab
n

as πn when n ≥ 2. We will, with some abuse of notation,
view the Hurewicz homomorphism η as being defined over
πab
n . This is justified as the codomain is an abelian group.

Theorem 50. The Hurewicz homomorphism η : πab
n (X) →

H̃cw
n (X) is an isomorphism for any (n − 1)-connected CW

complex X .

Proof. Since we are proving a proposition, we can assume
that we have a CW structure X∗ and switch our homology
theory to H̃str

∗ . Since the map Xn+1 → X∞ is n-connected,
the canonical map πn(Xn+1) → πn(X) is an equivalence.
Similarly, H̃str

n (X•) = H̃str
n (X

(n+1)
• ) by definition. Thus, it

suffices to show the theorem for the (n + 1)-skeleton of X .
As X is Hurewicz (n − 1) connected we may assume that
Xn =

∨
B Sn and that Xn+1 = Cf for some α :

∨
A Sn →∨

B Sn. Elementary algebra tells us that abelianisation is right-
exact and thus preserves the exact sequence in Proposition 49.
Let us compare this sequence (top sequence below) to the
corresponding for homology in (1) (bottom sequence below).

πab
n

(∨
A Sn

)
πab
n

(∨
B Sn

)
πab
n (Cf )

Z[A] Z[B] Z[B]/Z[A]

H̃str
n

(∨
A Sn

•

)
H̃str

n

(∨
B Sn

•

)
H̃str

n ((Cf )•)

f∗

∼

cfcod∗

∼ ∼

f

∼ ∼ ∼

f∗ cfcod∗

The isomorphisms πab
n (

∨
C Sn) ∼= Z[C] for C ∈ {A,B}

come from the inclusion
∨

A Sn → ΠA(Sn) which induces
an isomorphism on homotopy groups when n ≥ 2; this also
happens to be an isomorphism on πab

1 . On homology, the
isomorphism is a direct consequence of the Eilenberg-Steenrod
axioms (but can also be obtained by simply inspecting the
related chain complex). The fact that the two left-most squares
commute holds almost by definition of the maps involved.
Hence we obtain an isomorphism πab

n (Cf ) ∼= H̃str
n (Cf )•. We

simply have to verify that this isomorphism is equal to η. It
is enough to check this on the inclusion of generators from
πab
n (

∨
B Sn) – but here there is nothing to prove: simply

unfolding the definitions involved, it is immediate that the
desired equality holds.

VI. CONCLUSIONS AND FUTURE WORK

We hope the reader is now convinced that the theory of CW
complexes and cellular homology has a home in HoTT. The
fact that the results we have proved in this paper – in particular
the cellular and Hurewicz approximation theorems – are at all
provable without any form of choice was initially a surprise
to us. The theory of CW complexes and cellular homology
as it is developed classically often ‘feels’ constructive, with
many constructions being inductive, but it makes heavy use of
choice principles. An important takeaway is that this feeling
is justified: a significant part of this theory is constructive.

However, the initial motivation behind this project was
not to carry out a case study in constructive mathematics.
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Originally, our development was motivated by the recent proof
of the Serre Finiteness theorem by Barton and Campion [19].
This proof relies on homology computations and the Hurewicz
theorem, thus the formalisation that accompanies this paper
should be helpful to the ongoing formalisation of the Serre
Finiteness theorem (by, in particular, Milner [20]).

This paper also aims to be integrated into a larger project
including Mörtberg, which seeks to use cellular (co)homology
to reduce homological arguments in HoTT to concrete com-
putations which we can run in proof assistants. The canonical
example is the computation of the Brunerie number [2],
a number whose value is given by a certain cohomology
computation which, as it is constructively defined in HoTT,
should simply be produced by evaluating it in a proof assis-
tant, but whose evaluation is computationally infeasible. Our
hope is that if these computations are ported to a cellular
(co)homology theory, these many of them should become
feasible, paving the way for proofs by computation in HoTT.

It would also be interesting to use our cellular approach to
explore more advanced results and constructions such as the
Steenrod squares and the (currently open) Künneth formula.
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