
Abstract
The setoid model is a model of intensional type theory that validates extensionality principles such
as function extensionality and proposition extensionality, and perhaps most importantly, that can
be used to extend intensional type theory with quotient types. However, the manipulation of said
quotients is rendered difficult by the the lack of a principle called unique choice in existing accounts
of the setoid model. In this work, we propose a new construction for a universe of setoids which
does not require the equalities to be strict propositions, and we use it to obtain two models for the
Calculus of Inductive Constructions: a predicative setoid model which validates the principle of
unique choice, and an impredicative setoid model which validates the axiom of choice for decidable
relations with a countable codomain. Both models can be formulated in the Calculus of Inductive
Constructions without axioms, and they preserve all of its computation rules – except for the η-rule
for functions, which is weakened to a propositional equality.
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1 Introduction

Writing formal proofs in dependent type theory is a delicate art, even for the most seasoned
users of interactive proof assistants: the challenge often lies not so much in working out
the proof itself, but in finding the right definition to build upon. This is especially true in
intensional type theory (ITT) [16], where the equality judgment only ever identifies definitions
that are βη-convertible. Now, this whole intensionality business may seem unreasonably
restrictive compared to the extensional nature of informal mathematics, but it is in fact a
necessary condition for the decidability of the typing relation, which is important for both
foundational and practical reasons.

But while the intensional nature of the equality judgment serves an important purpose,
the same cannot be said of the propositional equality. And yet, in ITT the latter is usually
defined as an inductive family that inherits the coarseness of the equality judgment, resulting
in a notion of equality that is quite difficult to work with. As a result users commonly
postulate extensionality axioms for the propositional equality, such as the principle of function
extensionality, which states that two functions are equal if their images are equal, the principle
of proposition extensionality, which states that logically equivalent propositions are equal
or the principle of uniqueness of identity proofs (UIP). Unfortunately, axioms break some
computational properties of the system: adding function extensionality will result in closed
terms of type N that do not evaluate to an actual integer.

An alternative strategy is to work with types that are equipped with an equivalence
relation, which are known as setoids. Doing so allows the user to specify the meaning of
equality for each type, but it comes at the cost of having to prove manually that every
function preserves the setoid equality. This should be the work of a compiler, not of the user!
What we really want is a way to reason in type theory with extensionality principles, and
then automatically elaborate our reasoning into plain intensional type theory by inserting
setoid reasoning when necessary. This is precisely what Hofmann achieved with his setoid
model [15], which interprets all types as setoids and validates the principles of function
extensionality and proposition extensionality, and allows the definition of quotient types.
Unfortunately, Hofmann’s setoid model only handles a fragment of type theory. In particular
it does not support universes, which makes it impossible to even prove that 0 ̸= 1.

Hofmann’s pioneering work subsequently inspired many developments around setoids
and their internal type theories [1, 3, 2, 18, 17]. A particularly noteworthy innovation was
introduced by Altenkirch [1], who define the setoid equalities as strict propositions, i.e.,
propositions whose inhabitants are all judgmentally equal. This strong version of UIP greatly
simplifies the construction of the setoid model, which allowed Altenkirch, Boulier, Kaposi,
Sattler and Sestini to equip it with a proper universe of setoids [2].

In counterpart, the use of strict propositions seriously weakens the quotient types that
are provided by the model: now, if the user wants to form the quotient of a type by a proof-
relevant relation, they must first use a truncation operation to turn it into a proposition. But
propositional truncation is a lossy operation, and in general, it is not possible to recover an
inhabitant of the original type from a proof of its truncated version without invoking some
form of the axiom of choice. Still, depending on the exact nature of the truncation operation,
it may be possible to invert it in some special cases. In this paper, our aim is to provide a
setoid model with such “weak choice principles”, to make quotient types more usable.
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Weak Choice Principles

In particular, we are interested in two choice principles that may be stated in any type
theory that supports a sort of propositions Prop and a notion of propositional truncation ∥_∥.
The first principle is a strong form of unique choice, which states that we may construct a
function from any relation R : A → B → Prop which is propositionally a functional relation:

∀ (a : A), ∥ Σ (b : B), (R a b) × (∀ c, R a c → c = b) ∥
→ Σ (f : A → B), ∀ (a : A), R a (f a).

In dependent type theory, this statement happens to be equivalent to the simpler principle
of truncation elimination for “homotopy propositions”, i.e., for types whose inhabitants are
all propositionally equal.

isHProp A → ∥ A ∥ → A (1)

Our second principle is the axiom of choice for any decidable relation R : A → N → Prop:

∀ a b, (R a b) + ¬ (R a b)
→ ∀ (a : A), ∥ Σ (b : N), R a b ∥ → Σ (f : A → N), ∀ (a : A), R a (f a).

This is equivalent to truncation elimination for Σ0
1 types, i.e., types that are equivalent to

Σ (n : N). P n for some decidable predicate P.

isSigma01 A → ∥ A ∥ → A (2)

Principle (2) is a consequence of unique choice (as we may uniquely specify the solution by
taking the smallest one), but unlike unique choice, it is actually provable in the type theory
of Coq, as a consequence of the large elimination rule for the accessibility predicate:

Inductive Acc {A : Type} {R : A → A → Prop} (a : A) : Prop :=
| acc : (∀ (b : A), R b a → Acc b) → Acc a.

This large elimination rule is not available in Coq if we replace Prop with the sort of strict
propositions SProp, or otherwise the typechecking would become undecidable [12]. As a
consequence, neither unique choice nor large elimination for the accessibity predicate is
supported by the setoid models which are based on strict propositions.

Contributions

We construct a new universe of setoids which does not require the equalities to be strict
propositions. We then use our universe of setoids to construct two extensions of Hofmann’s
setoid model: an impredicative model which uses Prop-valued equalities and is formulated in
CIC, and a predicative model which uses Type-valued equalities and can be formulated in the
“predicative CIC”, i.e., without using the impredicative features of the theory. The predicative
model supports universes, Π-types, Σ-types, inductive types and quotient types, along with
with extensionality principles and the principle of unique choice. The impredicative model
adds a sort of propositions with impredicative quantification and large elimination of the
accessibility predicate, but it does not validate the principle of unique choice. Both models
preserve all the computation rules of CIC, except for the η-rule for function types which is
relegated to a propositional equality. Because our models are constructed in plain intensional
type theory, they show that extensionality principles, quotients and weak choice principles
do not add any consistency strength to intensional type theory.
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The construction of the impredicative model has been fully formalised in Coq, and links
to the relevant parts of the formalisation will be provided throughout the text. The complete
proof is available at the following (anonymised) URL: https://anonymous.4open.science/
r/supplementary_material-12B1/supplementary_material.v

1.1 Related work
The setoid model was originally conceived by Hofmann in order to extend intensional type
theory with extensionality principles and quotient types [14]. However, this first iteration
did not support universes or large elimination. Building on this work, Altenkirch used a
type theory extended with a sort of definitionally proof-irrelevant propositions to give a
stricter version of the setoid model, and equipped it with a universe of simple types [1]. This
already provides a limited form of large elimination, and in particular this is enough to prove
that 0 ̸= 1. Later down the line, Altenkirch et al. studied several methods to construct a
universe that supports dependent type formers, using further extensions of the ambient type
theory such as induction-recursion, induction-induction or a strengthened J eliminator for
the equality [2]. Compared to their work, our universe only needs plain indexed inductive
types, and we do not require our sort of proposition to be strict, which unfortunately weakens
the η-rule to a propositional equality.

Meanwhile, Altenkirch, McBride and Swierstra explored a different way to mix extension-
ality and intensionality with Observational Type Theory (OTT), an intensional type theory
whose propositional equality is defined on a type by type basis [3]. This strategy allows
them to implement quotient types and extensionality principles, while preserving the good
computational properties of their system. Subsequently, the community explored several
points in the design space of observational type theories: Sterling, Angiuli and Gratzer’s
XTT [18] uses a cubical syntax to implement extensionality principles, and implements uni-
verse induction, but lacks unique choice. Pujet and Tabareau’s CICobs adds an impredicative
sort of propositions and a scheme of inductive definitions to bring their system closer to
CIC, but they are not able to implement large elimination of the propositional accessibility
predicate [17]. Our work fills these gaps – we are able to handle unique choice in our
predicative model, and large elimination of accessibility in our impredicative model.

Cubical Type Theories [7, 19, 4] provide yet another way to compute with extensionality
principles, trading UIP for the more sophisticated principle of univalence. Additionally, they
support higher inductive types [6], which can be used to obtain quotient types with unique
choice. However, defining an impredicative version of Cubical Type Theory that preserves
all of its computational properties is still an open problem.

2 Preliminary Definitions

Our model construction takes place in an idealised version of the type theory behind the Coq
proof assistant, the Calculus of Inductive Constructions [8]. Accordingly, we will present our
model using the syntax of Coq.

Our version of the CIC is equipped with two sorts: the universe hierarchy {Typei}i∈N,
where Typei : Typei+1, and the sort of propositions Prop, which has type Type0. We will also
need dependent products, which we write ∀ (x : A). B, or A → B when B does not depend on A.
As usual, the typing rule for dependent products is split into two cases: on the one hand, if
the codomain B is in Typei, then the dependent product is in a universe that is larger or equal
than the universes of A and B (taking the convention that Prop is smaller than Typei for all i).
On the other hand, if B is in Prop, then the dependent product is also in Prop regardless of

https://anonymous.4open.science/r/supplementary_material-12B1/supplementary_material.v
https://anonymous.4open.science/r/supplementary_material-12B1/supplementary_material.v
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the type of A. In other words, the sort of propositions Prop is impredicative. We also ask for
primitive Σ-types with η-expansion, which we write Σ (x : A). B, or A × B when B does not
depend on A. This datatype can be implemented in Coq using a record type with primitive
projections.

Finally, we allow the definition of indexed inductive types in both Typei and Prop, using
a definition scheme that is similar to the one implemented in Coq [9]. Large elimination, the
possibility to define arbitrarily large objects by induction, is permitted for inductive types in
Typei, and for inductive types in Prop that satisfy the subsingleton criterion1. Examples of
indexed inductive types include the type of booleans Bool, the type of natural numbers N,
the inductive identity type Id, the type of well-founded trees W (x : A). B, and the accessibility
predicate Acc. They can also be used to define universe lifting operators, which we may
silently insert to simulate cumulativity.

Predicative CIC

As mentioned in the introduction, we are actually going to construct two different models:
an impredicative model which puts the setoid equalities in Prop, and a predicative model
which uses the Type hierarchy instead. One important point about the predicative model
is that it can be constructed in CIC without relying on impredicativity at all, i.e., without
using the impredicative sort Prop. The resulting theory, which we call preCIC (short for
predicative CIC), is roughly equivalent to Martin-Löf’s intensional type theory [16] extended
with Coq’s scheme for inductive definitions and the η-rule for Σ-types.

Since the constructions of our two models will be very similar, we want to factor out the
redundant parts. To this end, we introduce a placeholder sort Sorti, which means Typei for
the predicative model, and Prop for the impredicative model. We will be careful to only use
Sorti in places where both the typing rules for Typei and the typing rules for Prop apply, and
we will revert to explicit sorts when the difference starts to matter.

2.1 Setoids
A setoid is a type that is equipped with an equivalence relation. This relation, the setoid
equality, should be valued in Prop for the impredicative model and in Type for the predicative
model. Thus, a setoid of universe level i may be summarised by the following record type:

Record Setoidi : Typei+1 := {
A : Typei ;
eq : A → A → Sorti ;
refl : ∀ a, eq a a ;
sym : ∀ a b, eq a b → eq b a ;
trans : ∀ a b c, eq a b → eq b c → eq a c

}.

Then, setoid morphisms are defined as functions that preserve the setoid equality:

Record SetoidFuni (X Y : Setoidi) : Typei := {
f : X.A → Y.A ;
f_eq : ∀ a b, X.eq a b → Y.eq (f a) (f b)

}.

1 An inductive type is a subsingleton if it has at most one constructor, and all the types of the constructor
arguments are propositions.
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Remark that we do not ask for preservation of reflexivity, symmetry or transitivity. Finally,
if our goal is to interpret dependent type theory, we need a notion of indexed setoid family:

Record SetoidFami,j (X : Setoidi) : Typemax(i,j) := {
P : X.A → Typej ;
heq : ∀ a b, P a → P b → Sortj ;
hrefl : ∀ a p, heq a a p p ;
hsym : ∀ a b p q, heq a b p q → heq b a q p ;
htrans : ∀ a b c p q r, X.eq a b → heq a b p q → heq b c q r → heq a c p r ;
coe : ∀ a b, X.eq a b → P a → P b ;
coh : ∀ a b p e, heq a p b (coe a b e p)

}.

Our setoid families are equipped with a heterogeneous equality modeled after the observational
equality of Altenkirch, McBride and Swierstra [3], and a coercion operator which preserves
the heterogeneous equality.

Hofmann and his successors directly use the category of setoids as a model of type theory,
by giving it the structure of a category with families (CwF, [11]). They explain how to
interpret contexts as arbitrary setoids, substitutions as setoid morphisms, types as dependent
setoids, etc., and after that they discuss the addition of a universe. In this paper, we do it
the other way around: we start by constructing a universal setoid that is closed under all the
basic type formers of dependent type theory, and then we use it to define a model.

3 The Universal Setoid

3.1 Inductive-Recursive Recipe
How do we construct our universal setoid? The most natural approach would be to equip
the type of all small setoids with a setoid equality, but there does not seem to exist any
good candidate. In particular, we cannot use arbitrary isomorphisms as equalities, because
the type of isomorphisms between two setoids is not a proposition, and truncating it would
destroy too much information to get a usable notion of equality.

Instead, we follow the approach of Altenkirch et al. [2] and define our universe as the
smallest setoid that is closed under all the type formers of our theory. In other words, we are
building a setoid of codes, which contains a code for the setoid of natural numbers, codes for
dependent products of setoids (given a code for the domain and a function from the domain
into the codes for the codomain), etc. The setoid equality between codes is recursively
generated: for instance, the codes for A → B and C → D are equal if and only if the codes for
A and C are equal and the the codes for B and D are equal.

The easiest way to define this structure is induction-recursion [10], which allows us to
simultaneously define the carrier of the universal setoid as an inductive type U0 along with
three recursive functions eqU0, El0 and eq0 that respectively represent the setoid equality on
the universe, the universal family of small setoids and its heterogeneous equality (Figure 1).
Unfortunately our metatheory does not support induction-recursion, so we need to find a
way to encode this definition with plain indexed inductive types. The canonical method is
Hancock et al.’s small induction-recursion [13], but it does not apply to our definition: not
only do the recursive functions eqU0 and eq0 have two arguments of type U0 instead of one,
but the return type of eqU0 is not even small for the predicative model.



L. Pujet XX:7

(* Underlying type of the universal setoid *)
Inductive U0 : Type1 :=
| cN : U0

| cΣ : ∀ (A : U0) (P : El0 A → U0) (Pe : ∀ a a’, eq0 A A a a’ → eqU0 (P a) (P a’)), U0

| cΠ : ∀ (A : U0) (P : El0 A → U0) (Pe : ∀ a a’, eq0 A A a a’ → eqU0 (P a) (P a’)), U0.

(* Setoid equality on U0 *)
Fixpoint eqU0 (A B : U0) : Sort1 :=

match A, B with
| cN, cN ⇒ True
| cΣ A P Pe, cΣ B Q Qe ⇒ (eqU0 A B) × (∀ a b, eq0 A B a b → eqU0 (P a) (Q b))
| cΠ A P Pe, cΠ B Q Qe ⇒ (eqU0 A B) × (∀ a b, eq0 A B a b → eqU0 (P a) (Q b))
| _, _ ⇒ False
end.

(* Universal family of setoids over U0 *)
Fixpoint El0 (A : U0) : Type0 :=

match A with
| cN ⇒ N
| cΣ A P Pe ⇒ Σ (a : El0 A), El0 (P a)
| cΠ A P Pe ⇒ Σ (f : ∀ (a : El0 A), El0 (P a))

, (∀ a a’, eq0 A A a a’ → eq0 (P a) (P a’) (f a) (f a’))
end.

(* Heterogeneous setoid equality on the family *)
Fixpoint eq0 (A B : U0) (x : El0 A) (y : El0 B) : Sort0 :=

match A, B with
| cN, cN ⇒ Neq x y (* inductively defined equality on N *)
| cΣ A P Pe, cΣ B Q Qe ⇒ (eq0 A B x.1 y.1) × (eq0 (P x.1) (Q y.1) x.2 y.2)
| cΠ A P Pe, cΠ B Q Qe ⇒ ∀ a b, eq0 A B a b → eq0 (P a) (Q b) (x a) (y b)
| _, _ ⇒ False
end.

Figure 1 Inductive-recursive definition of a universal setoid with three type formers.

3.2 A Plan in Two Steps
To get around this issue, we start by defining an overapproximation preU0 for our setoid
universe, with a constructor for dependent products that is parametrised by arbitrary equality
relations on A and P and does not enforce P to be a setoid morphism (Figure 2). This way,
the definition of preU0 is not mutual with the definition of eq0 and eqU0 anymore, and it fits
in the framework of small induction-recursion. It may thus be expressed with an ordinary
inductive type, as we did in the Coq definition. As an aside, remark that there is no need to
parametrise the constructor for dependent sums in a similar way, because dependent sums
of setoids do not involve any sort of equality preservation condition. Now, we define the
equality relations eq0 and eqU0 on the overapproximated universe, using the same definitions
from Figure 1. Thanks to our little maneuver, these functions are not mutually defined with
preU0, and thus they can be given a simple recursive definition.
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Inductive preU0 : Type1 :=
| preN : preU0

| preΣ : ∀ (A : preU0) (P : El0 A → preU0), preU0

| preΠ : ∀ (A : preU0) (Aeq : El0 A → El0 A → Sort0)
(P : El0 A → preU0) (Peq : ∀ a0 a1, El0 (P a0) → El0 (P a1) → Sort0), preU0.

Fixpoint El0 (A : preU0) : Type0 :=
match A with
| preN ⇒ N
| preΣ A P ⇒ Σ (a : El0 A), El0 (P a)
| preΠ A Aeq P Peq ⇒ Σ (f : ∀ (a : El0 A), El0 (P a))

, (∀ a a’, Aeq a a’ → Peq (f a) (f a’))
end.

Figure 2 Small inductive-recursive definition of an overapproximated universe.

Inductive extU0 : preU0 → Type1 :=
| extN : extU0 cN

| extΣ : ∀ (A : preU0) (Ae : extU0 A)
(P : El0 A → preU0) (Pe : ∀ a, extU0 (P a))
(Pext : ∀ a0 a1, eq0 A A a0 a1 → eqU0 (P a0) (P a1))

, extU0 preΣ A P.
| extΠ : ∀ (A : preU0) (Ae : extU0 A)

(P : El0 A → preU0) (Pe : ∀ a, extU0 (P a))
(Pext : ∀ a0 a1, eq0 A A a0 a1 → eqU0 (P a0) (P a1))

, extU0 (preΠ A (eq0 A A) P (fun a0 a1 ⇒ eq0 (P a0) (P a1))).

Definition U0 := Σ (A : preU0), extU0 A.

Figure 3 Inductive predicate that carves out the well-formed elements of preU0.

Next, we define an inductive predicate extU0 that carves out the codes from preU0 which
have a counterpart in the inductive-recursive definition from Figure 1. More specifically, it
ensures that that the dependent codomains that appear in preΠ and preΣ are proper setoid
morphisms from the domain into the universe, and that the codes for dependent products
have been parametrised with the equality relations defined by eq0. The definition of extU0 is
given in Figure 3. Finally, we can put everything together: the carrier type of our universal
setoid is defined as U0 := Σ (A : preU0). extU0 A, its setoid equality is given by eqU0 on the
first component, the universal dependent family on the universe is provided by El0, and the
heterogeneous equality on that family is given by eq0.

This roundabout encoding is actually faithful to the original inductive-recursive definition,
because we can derive the same induction principle with its computation rules (Coq definition),
and the three functions El0, eqU0 and eq0 compute on type formers.

3.3 Transitivity and Coercion
In order to complete the definition of our universal setoid, we need to show that the equality
relation eqU0 is an equivalence relation on U0, and that the relation eq0 is a heterogeneous
equality equipped with a coercion operator. Reflexivity and symmetry are a straightforward
application of the induction principle for U0 (Coq definition), but transitivity and the coercion
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operator require a bit more work. All in all, we want the following four operators:

transU0 : ∀ (A B C : U0), eqU0 A B → eqU0 B C → eqU0 A C
trans : ∀ (A B C : U0) (e : eqU0 A B) (a : El0 A) (b : El0 B) (c : El0 C),

eq0 A B a b → eq0 B C b c → eq0 A C a c
cast : ∀ (A B : U0) (e : eqU0 A B) (a : El0 A), El0 B
casteq : ∀ (A B : U0) (e : eqU0 A B) (a : El0 A), eq0 A B a (cast A B e a)

Consider how the trans operator should compute on dependent products. If f : Π A P is
equal to g : Π B Q, which is itself equal to h : Π C R, we want to produce a proof of equality
between f and h. To this end, we need to explain how to go from a proof of eq0 A C a c to
a proof of eq0 (P a) (R c) (f a) (h c), but our hypotheses only provide functoriality laws for
equalities that involve inhabitants of B. Thus, our only choice is to use cast and casteq to
construct an element b : B that is equal to a and c, and then use our functoriality hypotheses
and a recursive call to transitivity on the codomain. But on the other hand, the definition of
cast and casteq for dependent products involves an application of the trans operator on the
domain and the codomain.

In the end, trans cast and casteq can be defined mutually by induction on U0. In the
Coq definition, we are forced to duplicate each of these operators (with a version that goes
forward and a version that goes backward), or otherwise the contravariance introduced by
the dependent products would throw off the syntactic termination checker. Once these three
operators are defined, transU0 can be obtained with a straightforward induction on U0.

3.4 The Universe Hierarchy
We designed U0 as a universe of small setoids, i.e., setoids whose carrier type is in Type0 and
whose equality relation is in Sort0. The next step is the definition of U1, a similar universe
for setoids whose underlying type is in Type1 and whose equality is in Sort1. In particular U1

should contain a code for U0, an embedding of all the codes from U0, and it should be closed
under dependent products and dependent sums. To achieve this, we use the same recipe as
for U0, but with a slightly different set of constructors:

Inductive preU1 : Type2 :=
| preemb : ∀ (A : U0), preU1

| preU : preU1

| preΣ : (* same as in U0 *)
| preΠ : (* same as in U0 *)

Fixpoint El1 (A : preU1) : Type1 :=
match A with
| preemb A ⇒ El0 A
| preU ⇒ U0

| preΣ ⇒ (* same as in U0 *)
| preΠ ⇒ (* same as in U0 *)
end.

We follow with a definition of eqU1 and eq1, which are respectively the setoid equality on U1

and the heterogeneous equality on the universal family over U1. On the constructors preU

and preemb, we simple reuse the previously defined equalities. The definition of reflexivity,
symmetry, transitivity and the coercion operator are similarly straightforward, reusing the
previously defined operators where they come in handy.

eqU1 cU cU := True
eqU1 (cemb A) (cemb B) := eqU0 A B

eq1 cU cU A B := eqU0 A B
eq1 (cemb A) (cemb B) a b := eq0 A B a b

This construction yields a functioning universe hierarchy of any finite length with a notion
of explicit cumulativity provided by the embedding constructor preemb. Another approach
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would be to remove that constructor and define the universe embedding as a setoid morphism
from U0 to U1 instead, but the definition of this function does not seem to be within the reach
of a straightforward application of our induction principle.

3.5 Propositions
In parallel of the universe hierarchy, it makes sense to have a sort for propositions, since
they play such an important role in setoid models. Here, the story is bound to be different
between the impredicative model and the predicative model, so we treat them separately.
First, in the impredicative case, we should have one setoid of propositions that sits at the
bottom of the universe hierarchy, so we add a new constructor cΩ to the universe U0, along
with the following definitions:

cΩ : U0

El0 cΩ := Prop
eqU0 cΩ cΩ := True
eq0 cΩ cΩ A B := A ↔ B

We shall also add a constructor cembΩ that simulates the cumulativity of Prop into Type:

cembΩ : Prop → U0

El0 (cembΩ A) := A
eqU0 (cembΩ A) (cembΩ B) := A ↔ B
eq0 (cembΩ A) (cembΩ B) a b := True

On the other hand, in the predicative model, we should have an entire hierarchy of propo-
sitional universes that mirrors the Type hierarchy. Thus, we add the constructor cΩ to
every universe except for the bottom one, and we define our setoids of propositions as Typei

quotiented by logical equivalence:

cΩ : Ui+1

Eli+1 cΩ := Typei

eqUi+1 cΩ cΩ := True
eqi+1 cΩ cΩ A B := A ↔ B

We also add a constructor cembΩ : Typei → Ui to embed propositions into the universes, with
the same definitions as above for the setoid equalities.

4 Designing a Model from the Universe Hierarchy

We now have all of the necessary ingredients to build our model. Our plan is to interpret
contexts as inhabitants of an universe Ui and substitutions between two contexts as setoid
morphisms. Then, given a context Γ : Ui, a dependent type of level j over Γ will be a setoid
morphism from Eli Γ to Uj , and a term of that type will be an inhabitant of the corresponding
dependent product of setoids.

If we organise this data as a category with families (CwF, [11]), we can show that the
resulting CwF supports dependent products and dependent sums along with their η-rules,
natural numbers with their dependent eliminator, a sort of propositions, etc. In other words,
we can get a fully fledged model of dependent type theory. However, such a presentation
would hide an important aspect of our model construction: because the judgmental equalities
of intensional type theory are interpreted as judgmental equalities of the metatheory, our
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model preserves computation. In order to properly account for this aspect, we will instead
present our model as a syntactic translation in the sense of Boulier et al. [5].

We use two interpretation functions J _ K and {{_}} that are defined by recursion on
untyped syntax, with the intended meaning being that if the judgment Γ ⊢ t : A is derivable
in CIC (for the impredicative model) or in predicative CIC (for the predicative model), then
the following two judgments are derivable in CIC (resp. preCIC):

J Γ K ⊢ J t KΓ : Eli J A KΓ
{{Γ}} ⊢ {{t}}Γ0,Γ1,Γe

: eqi J A KΓ0 J A KΓ1 J t KΓ0 J t KΓ1

The first judgment corresponds to a dependent function from the setoid interpretation of
Γ to the setoid interpretation of A, while the second judgment ensures that this function is
a setoid morphism which sends equal inputs to equal outputs. Accordingly, the translated
context {{Γ}} in the second judgment consists of two instances Γ0 and Γ1 of J Γ K and a list of
equalities Γe between the two instances; the translated term {{t}}Γ0,Γ1,Γe is a proof of equality
between J t KΓ0 , the translation of t whose variables have been instanciated with variables
from Γ0, and J t KΓ1 , whose variables have been instanciated with variables from Γ1.

Contexts and Variables

The interpretation of contexts is defined by recursion on their length:

J ε K = ε

{{ε}} = ε

J Γ, x : A K = J Γ K, x : Eli J A KΓ
{{Γ, x : A}} = J Γ K, x0 : Eli J A KΓ0 , x1 : Eli : J A KΓ1 , xe : eqi J A KΓ0 J A KΓ1 J t KΓ0 J t KΓ1

where i is the universe level of the type A. Writing these universe levels everywhere gets a
bit cumbersome, so from now on we will omit them and simply write El or eq. Now, we can
describe the interpretation of the terms of our theory, starting with variables:

J x KΓ = Γ(x)
{{x}}Γ0,Γ1,Γe = Γe(x)

Dependent Sums

JΣ (a : A), B KΓ = cΣ J A KΓ (fun a ⇒ J B KΓ,a) (fun a0 a1 ae ⇒ {{B}}Γ,Γ,refl,a0,a1,ae)
{{Σ (a : A), B}}Γ0,Γ1,Γe

= ({{A}}Γ0,Γ1,Γe
; fun a0 a1 ae ⇒ {{B}}Γ0,Γ1,Γe,a0,a1,ae

)

J (t ; u) KΓ = (J t KΓ ; J u KΓ)
{{(t ; u)}}Γ0,Γ1,Γe

= ({{t}}Γ0,Γ1,Γe
; {{u}}Γ0,Γ1,Γe

)

J t.1 KΓ = (J t KΓ).1
{{t.1}}Γ0,Γ1,Γe

= ({{t}}Γ0,Γ1,Γe
).1

J t.2 KΓ = (J t KΓ).2
{{t.2}}Γ0,Γ1,Γe

= ({{t}}Γ0,Γ1,Γe
).2

Dependent sums are directly translated as metatheoretical dependent sums. This implies
that both the β-reduction rules and the η-expansion rule are preserved by the translation.
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Dependent Products

J ∀ (a : A), B KΓ = cΠ J A KΓ (fun a ⇒ J B KΓ,a) (fun a0 a1 ae ⇒ {{B}}Γ,Γ,refl,a0,a1,ae
)

{{∀ (a : A), B}}Γ0,Γ1,Γe
= ({{A}}Γ0,Γ1,Γe

; fun a0 a1 ae ⇒ {{B}}Γ0,Γ1,Γe,a0,a1,ae
)

J fun (a : A) ⇒ t KΓ = (fun (a : El J A KΓ) ⇒ J t KΓ,a ; fun a0 a1 ae ⇒ {{t}}Γ,Γ,refl,a0,a1,ae
)

{{fun (a : A) ⇒ t}}Γ0,Γ1,Γe
= fun a0 a1 ae ⇒ {{t}}Γ0,Γ1,Γe,a0,a1,ae

J t u KΓ = (J t KΓ).1 J u KΓ
{{t u}}Γ0,Γ1,Γe

= {{t}}Γ0,Γ1,Γe
J u KΓ0 J u KΓ1 {{u}}Γ0,Γ1,Γe

The translation preserves β-reduction, but unfortunately the same cannot be said of the
judgmental η-expansion rule. After applying J _ K to both sides of f = (fun x ⇒ f x), we are
left with an equation that boils down to

(J f K.1 ; J f K.2) ?= (J f K.1 ; {{f}})

which does not have any good reason to hold judgmentally in the absence of judgmental
proof irrelevance. However, remark that the setoid equality on dependent products equates
functions with their η-expanded forms, which means that the η-rule at least holds up to a
propositional equality.

Natural Numbers

JN KΓ = cN

{{N}}Γ0,Γ1,Γe
= ∗ (* The unique inhabitant of True *)

J zero KΓ = zero
{{zero}}Γ0,Γ1,Γe

= Neq_zero

J suc n KΓ = suc J n KΓ
{{suc n}}Γ0,Γ1,Γe

= Neq_suc {{n}}Γ0,Γ1,Γe

The interpretation of the natural numbers uses the metatheoretical natural numbers quite
transparently. As a consequence, the translation of the recursor can be derived from the
metatheoretical recursor:

JN_rec P pz psuc n KΓ = N_rec (fun n ⇒ El (J P KΓ.1 n)) J pz KΓ (fun m p ⇒ (J psuc KΓ.1 m).1 p) J n KΓ

Likewise, {{N_rec P pz psuc n}} is derived from the metatheoretical recursor for Neq. We do
not reproduce the full term here, but the interested reader can consult the Coq definition.

Universes and Propositions

The universe Typei is interpreted as the code cU in the setoid Ui+1. In the impredicative
model, we also interpret the universe of propositions Prop as the code cΩ:

J Typei KΓ = cU

{{Typei}}Γ = ∗
J Prop KΓ = cΩ

{{Prop}}Γ = ∗

Naturally, that second part does not apply to the predicative model.
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Reifying the Setoid Equality

Having worked so hard to setup our model in the category of setoids, it is time to reap the
reward: a flexible notion of equality that validates function extensionality and proposition
extensionality. In order to account for this extra data, we extend the source theory of our
model with axioms that reify the behaviour of the setoid equality. More formally, define the
type theory CICext as the fragment of CIC that is supported by our impredicative model
(i.e., dependent products without η, dependent sums, natural numbers, universes and the
impredicative sort of propositions), plus the following axioms:

eq : ∀ {A B : Typei}, A → B → Prop
refl : ∀ {A : Typei} (a : A), eq a a
sym : ∀ {A B : Typei} (a : A) (b : B), eq a b → eq b a
trans : ∀ {A B C : Typei} (e : eq A B) (a : A) (b : B) (c : C),

eq a b → eq b c → eq a c
ap : ∀ {A P} (f : ∀ (a : A), P a) (a b : A), eq a b → eq (f a) (f b)
cast : ∀ {A B : Typei} (e : eq A B), A → B
casteq : ∀ {A B : Typei} (e : eq A B) (a : A), eq a (cast e a)
irr : ∀ {P Q : Prop} (p : P) (q : Q), eq p q
propext : ∀ (P Q : Prop), eq P Q ↔ (P ↔ Q)
funext : ∀ {A B} {P : A → Typei} {Q : B → Typei} (f : ∀ (a : A), P a) (g : ∀ (b : B), Q b),

(∀ a b, eq a b → eq (f a) (g b)) → eq f g
pi_inj : ∀ {A B} {P : A → Typei} {Q : B → Typei},

eq (∀ (a : A), P a) (∀ (b : B), Q b) → (eq A B) × (eq P Q)
sig_inj : ∀ {A B} {P : A → Typei} {Q : B → Typei},

eq (Σ (a : A), P a) (Σ (b : B), Q b) → (eq A B) × (eq P Q)

Similarly, we define the type theory preCICext as the fragment of preCIC that is supported
by the predicative model, extended with a hierarchy of propositional universes {Propi}i∈N
such that Propi : Typei+1, and all of the above axioms for the setoid equality (after replacing
Prop with Propi in their types). Finally, we arrive at the following two theorems:

▶ Theorem 1 (Soundness of the Impredicative Model). If the judgment Γ ⊢ t : A is derivable
in CICext, then the following two judgments are derivable in CIC:

J Γ K ⊢ J t KΓ : Eli J A KΓ
{{Γ}} ⊢ {{t}}Γ0,Γ1,Γe

: eqi J A KΓ0 J A KΓ1 J t KΓ0 J t KΓ1

▶ Theorem 2 (Soundness of the Predicative Model). If the judgment Γ ⊢ t : A is derivable in
preCICext, then the following two judgments are derivable in preCIC:

J Γ K ⊢ J t KΓ : Eli J A KΓ
{{Γ}} ⊢ {{t}}Γ0,Γ1,Γe : eqi J A KΓ0 J A KΓ1 J t KΓ0 J t KΓ1

Additionally, since the natural numbers are interpreted as the type of natural numbers of
CIC, our model satisfies the canonicity property for natural numbers: any number that can
be defined in the empty context evaluates to an actual natural number made of zero and
successors.
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5 Quotients and Unique Choice

Setoids were originally studied by Hofmann as a model for quotients. Thus, it should come
as no surprise that our universe of setoids can be equipped with a notion of quotient types.
We extend the definition of Ui with a new constructor:

cQ : ∀ (A : Ui) (R : A → A → Sorti), U0

Eli (cQ A R Re) := Eli A
eqi (cQ A R Re) (cQ B S Se) a b := Σ (a0 : A) (b0 : B), (R∗ a a0) × (eqi A B a0 b0) × (S∗ b0 b)
eqUi (cQ A R Re) (cQ B S Se) := (eqUi A B) × (∀ a0 b0 (e0 : eqi A B a0 b0)

a1 b1 (e1 : eqi A B a1 b1),
R a0 a1 ↔ S b0 b1)

Remark that our constructor for quotients does not require R to be an equivalence relation.
Instead, the definition of the equality between two inhabitants of a quotient types uses the
reflexive, symmetric and transitive closures of the relations R and S, which we denote with
an asterisk. Next, we reify the quotient types in the syntax of our source theories CICext and
preCICext with the following primitives:

Q : ∀ (A : Typei) (R : A → A → Propi), Typei

quo : ∀ {A} {R}, A → Q A R
Q_eq : ∀ {A} {R} {a b : A}, R a b → eq0 (Q A R) (Q A R) (quo a) (quo b)
Q_rec : ∀ {A} {R} (P : Q A R → Typej) (pquo : ∀ a, P (quo a))

(pe : ∀ a b, R a b → eq0 (P (quo a)) (P (quo b)) (pquo a) (pquo b))
(x : Q A R), P x

and the computation rule Q_rec P pquo pe (quo a) = pquo a. The reader who is interested in the
detailed implementation of these primitives is invited to consult the Coq development.

5.1 Propositional Truncation and Unique Choice
We would like to draw the reader’s attention to the fact that a type may only be quotiented
by a propositional relation. This means that if we want to take the quotient of a type A by a
relation that is valued in Type, we need to find a way to approximate this relation with a
proposition. This is precisely the role of a truncation operator, which may be axiomatised in
the source theory as follows:

∥_∥ : Typei → Propi

|_| : ∀ (A : Typei), A → ∥ A ∥
unbox : ∀ (A : Typei) (P : Propi), (A → P) → ∥ A ∥ → P

In the predicative model, we can find a very simple interpretation for truncation: since
J Propi K is defined as Typei, we interpret the truncation operator as J ∥ A ∥ K := Eli J A K. With
this definition, the truncation operation forgets the setoid structure, but it does not affect
the underlying type. This allows us to add an operator that evades truncation when A is a
homotopy proposition:

evade : ∀ (A : Typei), (∀ (a b : A), eqi A A a b) → ∥ A ∥ → A

As we explained in the introduction, evade is equivalent to the principle of unique choice.
This has important consequence for our source type theory: functions become equivalent
to functional relations, and quotient types become effective in the sense of Hofmann [14].
Unfortunately, this trick does not work for the impredicative model, since we cannot evade
the universe of propositions so easily.
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6 The Accessibility Predicate

We cannot get unique choice in our impredicative model, but we have another ace up our
sleeve: recall the inductive definition of the accessibility predicate in CIC

Inductive Acc {A : Type} {R : A → A → Prop} (a : A) : Prop :=
| acc : (∀ (b : A), R b a → Acc b) → Acc a.

Accessibility provides a type-theoretic way to capture the notion of well-foundedness: an
element of A is accessible when all of its predecessors for the relation R are themselves
accessible. A key point about this definition is that it fulfills the syntactic criterion for being
a subsingleton inductive type2, which means that large elimination is allowed for accessibility
proofs. In other words, we can use accessibility to build inhabitants of arbitrarily large types
by induction over a relation that is only propositionally well-founded.

6.1 Escaping the World of Propositions
Large elimination of the accessibility predicate provides a notion of truncation elimination
for Σ0

1 types, i.e., types that are equivalent to Σ (n : N). P n for some decidable predicate P.

▶ Theorem 3. The following statement is provable in CIC:

∀ (P : N → Prop) (decP : ∀ n, (P n) + (¬ P n)), ∥ Σ (n : N). P n ∥ → Σ (n : N). P n

Proof. If (P 0) is true, then we are done. Otherwise, we can show that 0 is accessible for the
relation > on the type of integers that do not satisfy P. Indeed, accessibility is a proposition,
so in order to prove it we may unbox the truncated hypothesis and reason by induction on the
integer that satisfies P. Then, we show that there exists some n such that (P n) by induction
on the accessibility proof, using the decidability hypothesis to go from n to n+1. ◀

Although theorem 3 is weaker than unique choice, it lets us extract computational information
from the world of propositions: given a Turing machine and a proof that it halts on every
input, we can extract the function computed by this machine as a term of type N → N. For
instance, theorem 3 can be combined with impredicativity to define a function that computes
the normal form of any well-typed term of System F.

6.2 Accessibility in the World of Setoids
We extend the source theory of the impredicative model with the following primitives:

Acc : ∀ (A : Type) (R : A → A → Prop), A → Prop
acc : ∀ {A} {R} (a : A), (∀ (b : A), R b a → Acc A R b) → Acc A R a
acc_rec : ∀ {A} {R} (P : A → Typei),

(∀ a, (∀ b, R b a → Acc A R b) → (∀ b, R b a → P b) → P a)
→ ∀ (a : A), Acc A R a → P a

and the computation rule acc_rec P IH a (acc a Ha) = IH a Ha (fun b Hb ⇒ acc_rec P IH b Hb).
The predicate Acc is directly interpreted as the metatheoretical accessibility predicate, but

2 Recall that an inductive type is a syntactic subsingleton when it has only one constructor, and all of
the arguments of this constructor are propositions.
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the proof that it preserves setoid equalities is a bit more involved, as it follows from an
well-founded induction over an accessibility proof (Coq definition).

J Acc A R a KΓ = Acc (El J A KΓ) (fun a b ⇒ (J R KΓ.1 a).1 b) J a KΓ
{{Acc A R a}}Γ0,Γ1,Γe

= (* ... *)

J acc a Ha KΓ = acc J a KΓ J Ha KΓ
{{acc a Ha}}Γ0,Γ1,Γe

= ∗

The interpretation of the induction principle presents a more serious issue: it seems that it is
necessary to define J acc_rec K mutually with {{acc_rec}}, but the first function appears twice
in the return type of the second one, which would result in a “doubly recursive-recursive”
definition – which are not allowed in Coq. Even more concerning, the usual trick to get rid
of simple recursive-recursive definitions with a Σ-type does not seem to work in this tricky
situation. Thankfully, we can sidestep the issue by defining an inductive type that encodes
the graph of J acc_rec K, and then showing by induction that {{acc_rec}} holds for all the
values in the graph. Finally, we use induction to show that every value has an image in the
graph, thereby defining our two functions. The interested reader can find the details in the
Coq development.

7 Conclusion and Future Work

In this paper, we constructed two setoid models: a model of preCIC which supports ex-
tensionality principles, quotients and the principle of unique choice, and a model of CIC
which supports extensionality principles, quotients and large elimination of the accessibility
predicate. Since our models can be formulated in (pre)CIC and preserve the canonicity of
the natural numbers, we obtain a proof that any theorem about integers that can be proved
with extensionality principles and weak choice principles can also be proved without them.
Nevertheless, there are a few unsatisfactory points left:

Firstly, our models only validate a propositional η-rule for functions. We believe that
this issue could be fixed by ensuring that setoid morphisms preserve reflexivity proofs up
to a judgmental equality, but this constraint seems difficult to express in pure CIC.
Unlike CIC, the equality type of our model is not equipped with a J eliminator that
computes on proofs by reflexivity. It seems that it would be possible to adapt the
construction of identity types of Pujet and Tabareau [17] to recover a proper J eliminator,
at the cost of losing the computation rules of the equality type former.
Finally, and perhaps most importantly, the fact that we have two models instead of
one. We would like to enjoy both impredicativity and unique choice in the same model!
However, we suspect that the resulting theory would be logically stronger than CIC, and
thus that it is impossible to model it in CIC without axioms.
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