
Computing with Extensionality
Principles in Type Theory

13 December 2022

What is a proof?
« Given any map, you can always find a way to color all the regions so that

two adjacent regions never have the same color, using at most four colors. »

2

What is a proof?
« Given any map, you can always find a way to color all the regions so that

two adjacent regions never have the same color, using at most four colors. »

3

What is a proof?

« Given any map, you can always find a way to color all the regions so that
two adjacent regions never have the same color, using at most four colors. »

4

What is a proof?

??. Given any map, you can always find a way to color all the regions so that
two adjacent regions never have the same color, using at most four colors.

1. Every map has a finite number of regions

2. Every region has a finite number of adjacent regions

3. …

5

What is a proof?

83. Given any map, you can always find a way to color all the regions so that
two adjacent regions never have the same color, using at most four colors.

1. Every map has a finite number of regions

2. Every region has a finite number of adjacent regions

3. …

89373

Appel and Haken 1976, Every planar map is four colorable 6

What is a proof assistant?

We have to teach the computer how to read and check mathematics.

→ for this, we need a mathematical theory of mathematics!

Coq, Lean, Agda… speak the language of dependent type theory.

7

Four color theorem verified with the Coq proof assistant by Gonthier, 2008

Gonthier 2008, Formal Proof — The Four-Color Theorem

Martin-Löf Type Theory

MLTT is a sweet spot in the Curry-Howard correspondence.

8

Expressive enough to do a lot of

mathematics

Sufficient to define most computable
functions

You do not need a lemma to prove that 3+9
is 12.

Powerful…

Decidable

Your computer can always tell whether your

proof is correct

Normalization and canonicity

Closed terms always compute!

…but tractable

Martin-Löf Type Theory

MLTT is not without flaws: the inductive equality type encodes equality of

programs, not equality of behaviors.

Inductive eq (A : Type) (a : A) : A -> Type :=
| eq_refl : eq A a a

No function extensionality

You can prove ∀n. n+1 = 1+n, but you cannot prove λn.n+1 = λn.1+n

9

No quotient types

Given a relation R on a type A, you cannot form the type A/R

Martin-Löf Type Theory

MLTT is not without flaws: the inductive equality type encodes equality of

programs, not equality of behaviors.

Inductive eq (A : Type) (a : A) : A -> Type :=
| eq_refl : eq A a a

In fact, equality is decidable in the empty context:

10

Canonicity → every closed proof of equality computes to eq_refl, which

means the two sides have to be convertible

Decidable typing → the type-checker can decide if eq_refl applies

Martin-Löf Type Theory

Use axioms: simply postulate function extensionality, etc

Breaks canonicity

Use setoids: equip every type with an equivalence relation, and ensure that

functions preserve them

Does not scale to large proofs

Add the reflection rule to merge conversion and the inductive equality (ETT)

Breaks decidability

Use cubical type theory

Relies on complex rules from homotopy theory, computation is not always efficient

Use observational type theory

No implementation, less well-understood meta-theoretic properties

11

Workarounds?

Martin-Löf Type Theory

Use setoids: equip every type with an equivalence relation, and ensure that

functions preserve them

Does not scale to large proofs

Add the reflection rule to merge conversion and the inductive equality (ETT)

Breaks decidability

Use cubical type theory

Relies on complex rules from homotopy theory, computation is not always efficient

Use observational type theory

Less well-understood meta-theoretic properties (is it compatible with impredicativity?)

12

Workarounds?

Abel et al. 2020, Failure of normalization in impredicative […]

Contributions

13

A meta-theory for (impredicative) observational type theory

A formal calculus CCobs

Normalization, decidability, consistency, canonicity, proof-theoretic strength

(Almost) everything is formalized in Agda

Toward a translation of univalent type theory in CCobs

Using the cubical model of Cohen et al.

Homotopy canonicity, decidability, proof-theoretic results

Cubical synthetic homotopy theory

Short and clean proofs that rely on computation in Cubical Agda

Observational Type Theory and CCobs

S (S 0) ~ S (S 0)ℕ S 0 ~ S 0ℕ 0 ~ 0ℕ T

f ~ gA → B ∏ (x : A) . f x ~ g xB

Observational equality types are definitionally proof-irrelevant.

14

Instead of being an inductive datatype, the equality is defined by recursion

on the types.

Altenkirch et al. 2017, Observational Equality Now!
Altenkirch 1999, Extensional equality in intensional type theory

Observational Type Theory and CCobs

Observational equality types are definitionally proof-irrelevant.

15
Altenkirch et al. 2017, Observational Equality Now!
Altenkirch 1999, Extensional equality in intensional type theory

Predicative hierarchy of types

Type0 < Type1 < …

Impredicative universe of propositions

Prop

Datatypes

Computable functions

Constructive proofs

Logical constraints

Observational equality

Computationally irrelevant proofs

Observational Type Theory and CCobs

The observational equality lives in Prop. How do we eliminate it?

P : ℕ → Type n, m : ℕ e : m ~ n t : P mℕ
 : P n??

16

Observational Type Theory and CCobs

The observational equality lives in Prop. How do we eliminate it?

P : ℕ → Type n, m : ℕ e : m ~ n t : P mℕ

A, B : Type e : A ~ B x : AType

cast(A, B, e, x) : B

 : P n??

17

We use a type-casting

operator:

Observational Type Theory and CCobs

The observational equality lives in Prop. How do we eliminate it?

P : ℕ → Type n, m : ℕ e : m ~ n t : P mℕ

A, B : Type e : A ~ B x : AType

cast(A, B, e, x) : B

 : P ncast(P m, P n, ap f e, t)

18

We use a type-casting

operator:

Observational Type Theory and CCobs

S (cast(ℕ, ℕ, e, 0))

λ(x : A’). cast(B, B’, snd e, f cast(A’, A, fst e, x))

e : (A → B) ~ (A’ → B’)Type

S 0cast(ℕ, ℕ, e, S 0)

cast(A → B, A’ → B’, e, f)

19

Observational Type Theory and CCobs

cast(A → B, A’ → B’, e, f)

λ(x : A’). cast(B, B’, snd e, f cast(A’, A, fst e, x))

e : (A’ ~ A) ⨯ (B ~ B’)Type Type

20

S (cast(ℕ, ℕ, e, 0)) S 0cast(ℕ, ℕ, e, S 0)

Observational Type Theory and CCobs

CCobs supports basic inductive datatypes.
Dependent sums, integers, lists, W-types, etc. work as in MLTT.

Inductive eq (A : Type) (a : A) : A -> Type :=
| eq_refl : eq A a a

Indexed inductive types are more interesting!

21

With cast, we can show that a ~A b ⟷ eq A a b
Thus we can show function extensionality for the inductive equality

Observational Type Theory and CCobs

Inductive eq (A : Type) (a : A) : A -> Type :=
| eq_refl : eq A a a

22

We add a new way to inhabit eq

eq_cast : a ~A b -> eq A a b

The observational equality equates eq_refl and eq_cast

eq_refl ~eq A a a eq_cast e T

Observational Type Theory and CCobs

Inductive eq (A : Type) (a : A) : A -> Type :=
| eq_refl : eq A a a

23

We add a new way to inhabit eq

eq_cast : a ~A b -> eq A a a

The J eliminator computes on eq_cast

J(A, t, B, b, t’, eq_cast e)
cast(B t eq_refl, B t’ (eq_cast e), e’, b)

The J eliminator computes on eq_cast

OTT analogue of Swan’s identity type
Andrew Swan 2014, An algebraic weak factorisation system […]

Observational Type Theory and CCobs

24

We add a new conversion rule

A ≡ B
cast(A, B, e, t) ≡ t

new

Alternative solution: have the observational equality compute on reflexivity

Allais et al. 2013, New Equations for Neutral Terms

This rule is not very gracefully handled by reduction, but we can implement

it in the comparison algorithm for neutral values, as suggested by Allais et al.

Indexed inductive types become simpler! We can now use the usual trick of

adding an equality proof in constructors.

Observational Type Theory and CCobs

With these ingredients, CCobs supports all typing rules and computations

rules of MLTT, and adds extensionality principles (funext, propext).

On top of this, we can add new types:

25

- Quotients of a type by a proof-irrelevant equivalence relation

- Irrelevant squash types

- Subset types

Meta-theory of CCobs

Consistency

26

Normalization of

well-typed terms

Canonicity

theorems

Decidability of

conversionProof-theoretic

bounds

Decidability of

typing

Meta-theory of CCobs

Consistency is proved by constructing a model in ZF set theory with

Grothendieck universes.

From there, we obtain that

- There are no inhabitants of ⊥ in the empty context

- There are no closed proofs of anti-diagonal equalities between types

27

Meta-theory of CCobs

Normalization, canonicity and decidability of conversion are proved by

constructing a reducibility model.

We used the inductive-recursive framework of Abel, Öhman and Vezzosi

to formally prove these results in Agda.

Using an inductive construction of the universe is essential:

the observational equality and the cast operator compute on types.

The proof would not work with a open universe à la reducibility candidates

We extended the inductive-recursive model to support proof-irrelevant

impredicative propositions.

28Abel et al. 2018, Decidability of conversion for type theory […]

Meta-theory of CCobs

Normalization, canonicity and decidability of conversion are proved by

constructing a reducibility model.

29Abel et al. 2018, Decidability of conversion for type theory […]

Since propositions are proof-irrelevant, they do not play any role in

computation. We account for this in our model:
all proofs of propositions are reducible as long as they are well typed.

→ The reducibility model alone is not sufficient to derive canonicity.

But we can recover it with the help of the consistency theorem.

Meta-theory of CCobs

Normalization, canonicity and decidability of conversion are proved by

constructing a reducibility model.

30Abel et al. 2018, Decidability of conversion for type theory […]

Our reducibility model can be encoded in bare MLTT by replacing small

induction recursion with inductive types.

→ The power of impredicativity is confined to the irrelevant layer.

→ Any integer function that can be defined in CCobs can also be defined

in MLTT.

Toward a cubical translation into CCobs

The univalence axiom is the cornerstone of HoTT.

Univalence is implemented as a postulate → it blocks computation.

31

Prefascist translation + fibration structures = cubical translation

The cubical model of Cohen et al.
gives a constructive interpretation
of univalence in fibrant cubical
presheaves

Cohen et al. 2016, Cubical type theory
Pédrot 2020, Russian constructivism in a prefascist theory

The “prefascist” translation of
Pédrot builds intensional
presheaf models that respect
computation:
if Γ ⊢ t ≡ u then [Γ] ⊢ [t] ≡ [u]

Toward a cubical translation into CCobs

32

Prefascist translation + fibration structures = cubical translation

Cohen et al. 2016, Cubical type theory
Pédrot 2020, Russian constructivism in a prefascist theory

Consequences

- A machine-checked computational interpretation of univalence

- Homotopy canonicity

- Univalent type theory cannot define more integer functions than MLTT

Orton et al. 2017, Axioms for modelling cubical type theory in a topos

Toward a cubical translation into CCobs

So far, I have a machine-checked translation of

- the integers

- function types, dependent products and function extensionality

- the equality type

- a non-fibrant universe

33

Missing piece of the puzzle: the gluing construction

It seems rather involved, but doable

Cubical Synthetic Homotopy

Claim: a computational system allows cleaner and more elegant proofs

34

In order to support this, I proved some basic result of homotopy theory

in Cubical Agda, in collaboration with Mörtberg

Ω(S1) = Z

T2 = S1 × S1

3×3 lemma

Associativity of join

HoTT Agda

90 loc

150 loc

3000 loc

210 loc

Cubical Agda

50 loc

25 loc

200 loc

90 loc

Cubical Synthetic Homotopy

Claim: a computational system allows cleaner and more elegant proofs

35

In order to support this, I proved some basic result of homotopy theory

in Cubical Agda, in collaboration with Mörtberg

Note that a lot of the improvement is due to the inherently cubical

quality of the results, not only to computation!

Perspectives

Finish the cubical translation (Gluing)

36

Add HITs, and translate my proof of the Hopf fibration to obtain a CCobs

definition of the Brunerie number. Does it compute?

Implement CCobs in Coq?

Many people in the community want a good proof assistant for the internal

language of a 1-topos.

Thank you!

