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The Calculus of Inductive Constructions

Both Coq and Lean are based on the CIC

▶ Dependent type theory

▶ with a infinite universe hierarchy,

▶ an impredicative sort for propositions

▶ and a powerful scheme for inductive definitions

But difficulties with function extensionality and quotient types
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Observational Equality

In observational type theories1 the inductive equality is replaced with
the observational equality:

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 ∼𝐴 𝑢 ∶ 𝑆𝑃𝑟𝑜𝑝

Observational equality is eliminated via typecasting:

Γ ⊢ 𝑒 ∶ 𝐴 ∼ 𝐵 Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒, 𝑡) ∶ 𝐵

which computes by case analysis on A and B.

1Altenkirch, McBride, Swierstra '07 - Observational Equality, Now!
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Observational Equality

In ordinary dependent type theory each type former comes with

▶ a type formation rule

▶ introduction rules

▶ elimination rules

▶ computation rules

In observational type theory, every type former is also equipped with

▶ a definition for the equality between inhabitants

▶ a definition for the equality between two instances of the type

▶ computation rules for type-casting
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Observational Equality

Let us look at the example of (nondependent) function types:

▶ A definition for the equality between inhabitants

𝑓 ∼𝐴→𝐵 𝑔 ↔ Π(𝑥 ∶ 𝐴) . 𝑓 𝑥 ∼𝐵 𝑔 𝑥

▶ A definition for the equality between two instances of the type
former

(𝐴 → 𝐵) ∼𝑇𝑦𝑝𝑒 (𝐶 → 𝐷) ↔ (𝐶 ∼𝑇𝑦𝑝𝑒 𝐴) ∧ (𝐵 ∼𝑇𝑦𝑝𝑒 𝐷)

▶ A computation rule for type-casting

𝑐𝑎𝑠𝑡(𝐴 → 𝐵, 𝐶 → 𝐷, 𝑒, 𝑓)
≡ 𝜆 (𝑥 ∶ 𝐶) . 𝑐𝑎𝑠𝑡(𝐵, 𝐷, 𝑒2, 𝑓 𝑐𝑎𝑠𝑡(𝐶, 𝐴, 𝑒1, 𝑥))
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Observational Inductives?

Observational type theory is compatible with

▶ Dependent products

▶ Universes

▶ Impredicative strict Prop

▶ Σ-types, natural numbers

How do we fit the general inductive definitions of CIC into this
picture?
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First Example: Lists

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑙𝑖𝑠𝑡 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) ∶ 𝑇𝑦𝑝𝑒ℓ ∶=
| 𝑛𝑖𝑙 ∶ 𝑙𝑖𝑠𝑡 𝐴
| 𝑐𝑜𝑛𝑠 ∶ 𝐴 → 𝑙𝑖𝑠𝑡 𝐴 → 𝑙𝑖𝑠𝑡 𝐴

▶ When should two inhabitants of 𝑙𝑖𝑠𝑡 𝐴 be equal?

The J eliminator already gives the correct answer!

▶ When should 𝑙𝑖𝑠𝑡 𝐴 and 𝑙𝑖𝑠𝑡 𝐵 be equal types?

𝑙𝑖𝑠𝑡−𝑒𝑞 ∶ 𝑙𝑖𝑠𝑡 𝐴 ∼ 𝑙𝑖𝑠𝑡 𝐵 → 𝐴 ∼ 𝐵.

▶ How does type-casting compute?

𝑐𝑎𝑠𝑡 (𝑙𝑖𝑠𝑡 𝐴, 𝑙𝑖𝑠𝑡 𝐵, 𝑒, 𝑛𝑖𝑙) ≡ 𝑛𝑖𝑙
𝑐𝑎𝑠𝑡 (𝑙𝑖𝑠𝑡 𝐴, 𝑙𝑖𝑠𝑡 𝐵, 𝑒, 𝑐𝑜𝑛𝑠 𝑎 𝑙) ≡

𝑐𝑜𝑛𝑠 𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑙𝑖𝑠𝑡−𝑒𝑞 𝑒, 𝑎) 𝑐𝑎𝑠𝑡(𝑙𝑖𝑠𝑡 𝐴, 𝑙𝑖𝑠𝑡 𝐵, 𝑒, 𝑙)
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Observational Inductives?

Not so simple!

9



Constructor arguments, not parameters!

The universe inconsistency shows up because the size of an inductive
is determined by the types of its constructor arguments, not
parameters or indices.

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑆𝑚𝑎𝑙𝑙 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) ∶ 𝑇𝑦𝑝𝑒0 ∶=
| 𝑠𝑚𝑎𝑙𝑙 ∶ N → 𝑆𝑚𝑎𝑙𝑙 𝐴

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝐿𝑎𝑟𝑔𝑒 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) ∶ 𝑇𝑦𝑝𝑒ℓ ∶=
| 𝑙𝑎𝑟𝑔𝑒 ∶ 𝐴 → 𝐿𝑎𝑟𝑔𝑒 𝐴

the type of

the argument

is small

the type of

the argument

is large
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Constructor arguments, not parameters!

Lazy way out: bump up the universe levels of the inductives
according to their parameters and indices.

▶ reasonable for indices (cf HoTT)

▶ unacceptable for parameters!
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Observational Inductives?

With this technique, we can smoothly handle all inductive definitions
without indices

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑒𝑞 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) (𝑥 ∶ 𝐴) ∶ Π (𝑥 ∶ 𝐴) . 𝑇𝑦𝑝𝑒0 ∶=
| 𝑒𝑞_𝑟𝑒𝑓𝑙 ∶ 𝑒𝑞 𝐴 𝑥 𝑥

Parameters Indices

Treating indices will require a few more tricks.
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No Canonicity for Indices

Remember our failed attempt at a computation rule

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑒𝑞 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) (𝑥 ∶ 𝐴) ∶ 𝐴 → 𝑇𝑦𝑝𝑒0 ∶=
| 𝑒𝑞_𝑟𝑒𝑓𝑙 ∶ 𝑒𝑞 𝐴 𝑥 𝑥

𝑐𝑎𝑠𝑡 (𝑒𝑞 𝐴 𝑥 𝑥, 𝑒𝑞 𝐴′ 𝑥′ 𝑦′, 𝑒, 𝑒𝑞_𝑟𝑒𝑓𝑙) ≡ ����XXXX𝑒𝑞_𝑟𝑒𝑓𝑙

We cannot simplify casts on indices in general...

...but we can encode them away with observational equality
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"You can pick any colour, as long as it is black"

Henry Ford's trick2 can be used to encode indices with equalities on
parameters:

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) ∶ N → 𝑇𝑦𝑝𝑒ℓ ∶=
| 𝑣𝑛𝑖𝑙 ∶ 𝑣𝑒𝑐𝑡𝑜𝑟 𝐴 0
| 𝑣𝑐𝑜𝑛𝑠 ∶ Π (𝑚 ∶ N) . 𝐴 → 𝑣𝑒𝑐𝑡𝑜𝑟 𝐴 𝑚 → 𝑣𝑒𝑐𝑡𝑜𝑟 𝐴 (𝑆 𝑚)

becomes

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝐹 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) (𝑛 ∶ N) ∶ 𝑇𝑦𝑝𝑒ℓ ∶=
| 𝑣𝑛𝑖𝑙𝐹 ∶ (𝑛 ∼ 0) → 𝑣𝑒𝑐𝑡𝑜𝑟𝐹 𝐴 𝑛
| 𝑣𝑐𝑜𝑛𝑠𝐹 ∶ Π (𝑚 ∶ N) . 𝐴 → 𝑣𝑒𝑐𝑡𝑜𝑟𝐹 𝐴 𝑚 → (𝑛 ∼ 𝑆 𝑚) → 𝑣𝑒𝑐𝑡𝑜𝑟𝐹 𝐴 𝑛

and now we can used our recipe for inductives without indices.

2Altenkirch, McBride '06 - Towards Observational Type Theory
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"You can pick any colour, as long as it is black"

In the case of the inductive equality, Henry Ford's encoding produces:

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑒𝑞𝐹 (𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ) (𝑥 ∶ 𝐴) (𝑦 ∶ 𝐴) ∶ 𝑇𝑦𝑝𝑒0 ∶=
| 𝑒𝑞_𝑟𝑒𝑓𝑙𝐹 ∶ 𝑥 ∼𝐴 𝑦 → 𝑒𝑞𝐹 𝐴 𝑥 𝑦

→ an inhabitant of the inductive equality packs a hidden proof of
the observational equality!

Our strategy: present 𝑒𝑞 to the user but elaborate everything to 𝑒𝑞𝐹
under the hood.

𝑒𝑞  𝑒𝑞𝐹
𝑒𝑞_𝑟𝑒𝑓𝑙  𝑒𝑞_𝑟𝑒𝑓𝑙𝐹 𝑟𝑒𝑓𝑙

...
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"You can pick any colour, as long as it is black"

𝑒𝑞_𝑒𝑙𝑖𝑚  ...

We can write a term with the expected type using 𝑐𝑎𝑠𝑡 and 𝑒𝑞𝐹_𝑒𝑙𝑖𝑚

However, the computation rule is not preserved: 𝑐𝑎𝑠𝑡 only computes
on closed types, while 𝑒𝑞_𝑒𝑙𝑖𝑚 can compute even when the return
type is open.

The missing ingredient is the computation rule for cast on reflexivity:

𝑐𝑎𝑠𝑡(𝐴, 𝐴, 𝑟𝑒𝑓𝑙, 𝑡) ≡ 𝑡
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The missing rule

Our goal: adding 𝑐𝑎𝑠𝑡(𝐴, 𝐴, 𝑟𝑒𝑓𝑙, 𝑡) ≡ 𝑡 as a definitional equality

Because of proof irrelevance, it should apply whenever the two
endpoints of the cast are convertible:

Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒, 𝑡) ≡ 𝑡 ∶ 𝐵 𝑥

→ nonlinear reduction rule which specifies reduction mutually with
conversion checking
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Is this déjà vu?

This idea is reminiscent of Lean's treatment of the J eliminator:

𝑃 𝑎 ≡ 𝑃 𝑏
𝐽(𝐴, 𝑎, 𝑃, 𝑡, 𝑏, 𝑒) ≡ 𝑡

⚠ Abel, Coquand '19 - Failure of Normalization in Impredicative
Type Theory with Proof-Irrelevant Propositional Equality

This is not an undecidability result, though
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The conversion checking algorithm

Because cast reduces on type constructors, this rule only plays a role
for relevant neutral terms.

▶ we can implement it as a nonlinear reduction rule

▶ or we can offload it to the conversion checker for neutral terms.

input: t and u

(neutral terms)
head-reduce t and u
is one of them a cast?

proceed as usual

with t and u

recursive call
on t' and u

output no
is A convertible to B?

(recursive call)

no

yes yes

no
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Decidability proof

Using the second approach, we can add it on top of our logical
relation model for TT𝑜𝑏𝑠/CC𝑜𝑏𝑠 3

→ Formal Agda proof of the decidability of conversion
for our new rule

3P, Tabareau '22 - Obserational Equality: Now for good
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Coming soon-ish

In your favourite rooster-themed proof assistant!
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