

Definitional Proof Irrelevance Made Accessible

Thiago Felicissimo

Inria

Gallinette Project-Team

Nantes, France

thiago.felicissimo@inria.fr

Nicolas Tabareau

Inria

Gallinette Project-Team

Nantes, France

nicolas.tabareau@inria.fr

Yann Leray

Nantes Université

LS2N

Nantes, France

yann.leray@inria.fr

Loïc Pujet

Université de Strasbourg

ICube

Strasbourg, France

loic@pujet.fr

Éric Tanter

Universidad de Chile

Departamento de Ciencias de la

Computación

Santiago, Chile

etanter@dcc.uchile.cl

Théo Winterhalter

Inria

DeduceTeam Project-Team

Gif-sur-Yvette, France

theo.winterhalter@inria.fr

Abstract

A universe of propositions equipped with definitional proof irrelevance constitutes a convenient medium to express properties and proofs in type-theoretic proof assistants such as LEAN, Rocq, and AGDA. However, allowing accessibility predicates—used to establish semantic termination arguments—to inhabit such a universe yields undecidable typechecking, hampering the predictability and foundational bases of a proof assistant. To effectively reconcile definitional proof irrelevance and accessibility predicates with both theoretical foundations and practicality in mind, we describe a type theory that extends the Calculus of Inductive Constructions featuring observational equality in a universe of strict propositions, with two variants for handling the elimination principle of accessibility predicates: one variant safeguards decidability by sticking to propositional unfolding, and the other variant favors flexibility with definitional unfolding, at the expense of a potentially diverging typechecking procedure. Crucially, the metatheory of this dual approach establishes that any proof made in the definitional variant of the theory can be translated into a proof of the same statement in the propositional variant, all while preserving the decidability of the latter. Moreover, we prove the two variants to be consistent and to satisfy forms of canonicity, ensuring that programs can indeed be properly evaluated. We present an implementation in Rocq and compare it with existing approaches. Overall, this work introduces an effective technique that informs the design of proof assistants with strict propositions, enabling local computation with accessibility predicates without compromising the ambient type theory.

ACM Reference Format:

Thiago Felicissimo, Yann Leray, Loïc Pujet, Nicolas Tabareau, Éric Tanter, and Théo Winterhalter. 2026. Definitional Proof Irrelevance Made Accessible. In *Proceedings of Logic in Computer Science (LICS '26)*. ACM, New York, NY, USA, 13 pages. <https://doi.org/10.1145/nnnnnnn.nnnnnnn>

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

LICS '26, Lisbon, Portugal

© 2026 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

<https://doi.org/10.1145/nnnnnnn.nnnnnnn>

1 Introduction

Proof assistants based on dependent type theory such as Rocq (formerly known as Coq), LEAN, and AGDA embody the Curry-Howard correspondence, in which propositions are represented as types and proofs as well-typed terms.

Propositions and proof irrelevance. Although the Curry-Howard philosophy suggests that propositions should be considered as regular types just like \mathbb{N} or \mathbb{B} , in practice it is useful to enforce a clear distinction between *relevant* data and *irrelevant* proofs.

For instance, the proof assistant Rocq features a special universe for propositions called *Prop*. All the types in *Prop* are compatible with *propositional proof irrelevance*, a principle which states that any two proofs of the same statement are propositionally equal. In contrast, this principle is clearly invalid for most datatypes (which are thus put in the *Type* hierarchy): consider for instance the type of natural numbers \mathbb{N} , for which one can show that $0 \neq 1$.

In order to be compatible with proof irrelevance, one must ensure that irrelevant proof terms cannot be used to produce computationally relevant content in a way that would enable distinguishing two proofs of the same statement. This property is also key for having an *extraction* mechanism, which strips terms of all propositional content in order to compile them to common programming languages [Letouzey 2004].

In the Calculus of Inductive Constructions [Paulin-Mohring 2015]—the underlying theory of Rocq—this is enforced by a syntactic condition known as the *subsingleton criterion*:¹ eliminating a term of an inductive type in *Prop* to produce a term whose type is in *Type* is allowed only if the input inductive type has at most one constructor whose non-parameter arguments' types are also in *Prop*. This controlled *Prop*-to-*Type* elimination applies in particular to three fundamental inductive types, each corresponding to highly relevant application scenarios in theorem proving:

- (a) the empty type *False*, used to discard impossible branches in pattern matching;
- (b) the identity type *Eq*, used to rewrite provably equal terms;
- (c) the accessibility predicate *Acc*, allowing the definition of recursive functions (*a.k.a.* fixpoints) via semantic termination arguments, such as an evaluator for System F terms.

¹This criterion was introduced in Coq 7.3 in 2002.

Strict propositions. Unfortunately, the compatibility of `Prop` with propositional proof irrelevance is often insufficient in practice: the user is still required to perform explicit rewrites when relating terms up to proofs. As a consequence, working for instance with subset types becomes more unpleasant, even though they are omnipresent in both mathematical and programming developments. Worse, as soon as the user postulates proof irrelevance—or almost any axiom, for that matter—they break the property of *canonicity*, *i.e.*, that any term of type \mathbb{N} computes to a numeral.

To address the aforementioned problems, type-theoretic proof assistants have increasingly added support for *strict propositions*, for which proof irrelevance is not propositional but definitional—allowing, for instance, terms of a subset type be convertible as soon as their data components are convertible. Strict propositions were first introduced in LEAN, before being integrated in AGDA and in Rocq [Gilbert et al. 2019]. Here, we adopt the convention of Rocq and write the universe of strict propositions as `SProp`, to distinguish it from `Prop`. Apart from yielding a setting closer to informal mathematical practice, strict propositions are also necessary for many important constructions in type theory, such as the setoid model of Altenkirch [1999a] and the strict presheaves of Pédrot [2020].

Crucially, the addition of `SProp` was shown to preserve all important metatheoretical properties of type theory, in particular canonicity. Moreover, in stark contrast with `Prop` axioms, which block computation, canonicity holds even in the presence of consistent `SProp` axioms, such as *function extensionality*—which states that two functions are equal whenever they are pointwise equal.

Failure of the subsingleton criterion. The move from `Prop` to `SProp` however jeopardizes the good properties of the subsingleton criterion for controlling elimination into `Type`. Naively extending it to inductive types in `SProp` only works safely for `False`. For `Eq`, the proof-irrelevant version of the traditional *J* eliminator with its stronger reduction rule, as implemented in LEAN, breaks canonicity in the presence of function extensionality [Avigad et al. 2025, Sec 12.3] and proof normalization in the presence of impredicativity [Abel and Coquand 2020]. Worse, elimination of `Acc` breaks decidability of conversion regardless of function extensionality or (im)predicativity [Gilbert et al. 2019].

For these reasons, Rocq and AGDA use a weakened version of the subsingleton criterion for `SProp`, which only allows the elimination of `False`. This restriction limits the applicability of `SProp`, so in practice Rocq users still resort to the legacy `Prop` universe to exploit equality rewriting and accessibility predicates for fixpoints, while AGDA users have to carry out their development in `Type`.

On the other hand, LEAN has originally supported the full subsingleton criterion for `SProp`. This has not only further hindered its computational properties—which were already jeopardized by the adoption of Hilbert’s global choice—but also forced users to deal with undecidable type checking. LEAN adopts a *heartbeat* mechanism that introduces a user-customizable bound on typechecking computation steps. While this effectively avoids infinite loops, the implementation of definitional equality becomes different from its specification and unpredictable—*e.g.*, it is no longer transitive—and subtle changes in heuristics to control unfolding can unexpectedly

break proofs.² In particular, until recently, using inconsistent axioms in LEAN could make evaluation loop. Since v4.9 (2024) LEAN has rolled back on computing with accessibility predicates, falling back to propositional rewriting. Because users can change this behavior via flags, it is unclear what metatheoretical properties are satisfied by this design.

Observational Equality. Given this less-than-ideal state of affairs, one can wonder if definitional proof irrelevance is doomed to lack well-behaved elimination into `Type`, or if it can be made to work with `Eq` and `Acc` all while preserving the good properties of type theory. Thankfully, Pujet et al. [2025]; Pujet and Tabareau [2022, 2023] realized that the issue with equality could be addressed by focusing on the alternative notion of *observational equality* [Altenkirch et al. 2007]. Unlike the inductive identity type of Martin-Löf [1975], whose elimination principle *J* works uniformly for all predicates in `Type`, the elimination of observational equality is defined in a type-directed manner via a cast operator. This approach is expressive enough to emulate the traditional *J* eliminator, and allows elimination of an `SProp`-valued equality into `Type` without compromising on decidability, canonicity or consistency. The theory CIC_{obs} extends CIC with observational equality, and will be available in a future release of Rocq. Thus, the only part of the subsingleton criterion that remains unavailable in `SProp` is the accessibility predicate.

Contributions. The goal of this work is to achieve a graceful marriage of accessibility and definitional proof irrelevance. Of course, we cannot avoid the undecidability result of Gilbert et al. [2019]: if one allows the unfolding of fixpoints whose accessibility proof starts with a constructor, then proof irrelevance will entail that every accessibility proof may as well start with a constructor, and thus that every fixpoint can be unfolded. If the well-foundedness used for a particular given fixpoint turns out to be unsound—*e.g.*, by relying on an inconsistent assumption—then the automatic unfolding of this fixpoint will blindly diverge.

Therefore, we propose to avoid the problems related to undecidability by first considering an extension of CIC_{obs} , henceforth named $\mathcal{T}_{\text{Acc}}^{\equiv}$, in which the computation rule for `Acc`, which specifies how the eliminator interacts with the constructor, only holds *propositionally*. Restricting elimination of accessibility to a propositional computation rule straightforwardly recovers decidability of conversion, but it also breaks the usual statement of canonicity, given that any function defined using accessibility only enjoys propositional unfolding. This can make reasoning about recursive functions defined via accessibility much less natural: for instance, given such a function $f : \mathbb{N} \rightarrow \mathbb{N}$, proving that $f k = m$ for k, m concrete natural numbers requires us to perform explicit rewrites (possibly a lot) to compensate for the lack of computation.

Our first technical contribution addresses this difficulty by introducing a second theory $\mathcal{T}_{\text{Acc}}^{\equiv}$ in which the computation rule for accessibility holds *definitionally*. As expected, conversion is undecidable in $\mathcal{T}_{\text{Acc}}^{\equiv}$, but in exchange for this we will show that it does satisfy canonicity, and thus that it provides a good setting to evaluate programs from $\mathcal{T}_{\text{Acc}}^{\equiv}$. For instance, if we embed the function f from the previous example in $\mathcal{T}_{\text{Acc}}^{\equiv}$, $f k$ now evaluates to m , and we

²See, for example, a [Zulip discussion](#) about opaque recursion definitions breaking the `mergeSort` decidability proof.

can show that $f k = m$ by reflexivity. However, this simpler proof is made in the theory $\mathcal{T}_{\text{Acc}}^{\equiv}$, not in $\mathcal{T}_{\text{Acc}}^=$, raising the question of how to connect this proof to one in the theory $\mathcal{T}_{\text{Acc}}^=$.

Our second major contribution is showing that the definitional theory $\mathcal{T}_{\text{Acc}}^{\equiv}$ is *conservative* over the propositional theory $\mathcal{T}_{\text{Acc}}^=$, by adapting Winterhalter et al. [2019]’s translation from extensional to intentional type theory, coming from the seminal work of Hofmann [1995]; Oury [2005]. Concretely, this implies that, when proving a proposition $P : \mathbf{SProp}$ in $\mathcal{T}_{\text{Acc}}^=$ (such as $f k = m$), one can locally switch to the theory $\mathcal{T}_{\text{Acc}}^{\equiv}$ to complete the proof, with the guarantee that the proof term in $\mathcal{T}_{\text{Acc}}^{\equiv}$ could in principle be elaborated to a proof term in $\mathcal{T}_{\text{Acc}}^=$. Yet, because proofs of strict propositions are computationally irrelevant, this proof term translation never needs to be performed in practice, and one can instead just add P in $\mathcal{T}_{\text{Acc}}^=$ as a (justified) axiom. This crucial remark allows us to avoid computing the explicit witness for P in $\mathcal{T}_{\text{Acc}}^=$, an important optimization for implementations.

Third, as a corollary of canonicity for $\mathcal{T}_{\text{Acc}}^{\equiv}$ and of its conservativity over $\mathcal{T}_{\text{Acc}}^=$, we also derive *propositional canonicity*³ for $\mathcal{T}_{\text{Acc}}^=$, stating that any closed term of type \mathbb{N} is propositionally equal to a numeral. Moreover, our canonicity results for $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$ are preserved in the presence of consistent axioms in \mathbf{SProp} , like the original canonicity results for \mathbf{SProp} discussed previously. This important aspect ensures for instance that programs whose termination relies on classical principles, such as excluded middle, can still be evaluated.

Finally, we also establish the consistency of $\mathcal{T}_{\text{Acc}}^=$ by adapting the set-theoretic model of Pujet et al. [2025], showing that our theory can be used as an internal language for set-level mathematics, all while preserving decidability and a sufficient form of canonicity.

Practical contribution. Justified by our theoretical results, we have implemented in Rocq the combination of $\mathcal{T}_{\text{Acc}}^=$ with a proof mode switch to $\mathcal{T}_{\text{Acc}}^{\equiv}$. This effectively allows users to enjoy the definitional unfolding of well-founded fixpoints inside a proof environment. Using an undecidable theory for proofs can seem scary, yet interactive provers such as Rocq have a long history of safely including potentially diverging mechanisms for making proving easier: for instance, tactics and automation have no termination guarantees.

To illustrate the benefits of our approach, we consider the case of System F and its strong normalization proof, from which one can derive an evaluator, and measure the performance of the evaluator to establish basic arithmetic results over Church numerals by computation. This simple case study shows that evaluating functions through their termination proofs in \mathbf{Prop} does not scale, and that automatic rewriting with the propositional computation rule for accessibility ($\mathcal{T}_{\text{Acc}}^=$) is orders of magnitude slower than direct computation with its the definitional computation rule ($\mathcal{T}_{\text{Acc}}^{\equiv}$).

Outline of the paper. §2 describes the two theories $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$, §3 establishes canonicity of $\mathcal{T}_{\text{Acc}}^{\equiv}$, §4 proves that $\mathcal{T}_{\text{Acc}}^{\equiv}$ is conservative over $\mathcal{T}_{\text{Acc}}^=$ and that $\mathcal{T}_{\text{Acc}}^=$ satisfies propositional canonicity, and §5 justifies the consistency of both theories via a set-theoretic model. Finally, §6 reports on an implementation of our proposal in Rocq, and §7 concludes, discussing related and future work.

Formalization. Our results have been mechanized in the Rocq prover (version 9.0), and are provided as anonymous supplementary material. Definitions and theorems are referred to in the text using the Rocq icon which marks a clickable link that points to an online anonymized version.

The examples given in §6 use an extension of the current version of Rocq (version 9.2) which is harder to anonymize but is available on request.

Metatheory. Although we formalize the results in Rocq, our metatheory is taken to be set theory. Therefore, we rely on the fact that CIC can be used as an internal language for sets [Lee and Werner 2011; Timany and Sozeau 2017].

2 Type Theories with Accessibility

In this section we formally introduce the systems $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$ mentioned in the introduction, which are both extensions of CIC_{obs} as introduced by Pujet et al. [2025]. Since $\mathcal{T}_{\text{Acc}}^=$ is included in $\mathcal{T}_{\text{Acc}}^{\equiv}$, we start by describing their common features before precisely explaining the extra feature of $\mathcal{T}_{\text{Acc}}^=$.

Typing rules. Figs. 1 and 2 give the common typing and conversion rules for $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$ —congruence rules are omitted, we refer to the formalization for the complete set of rules (🔗). The main typing judgments are $\Gamma \vdash_{\ell}^{\equiv} t : A$ for $\mathcal{T}_{\text{Acc}}^{\equiv}$ and $\Gamma \vdash_{\ell}^= t : A$ for $\mathcal{T}_{\text{Acc}}^=$ —we drop the subscript when referring to features and rules common to both systems. They specify that, in the context Γ , the term t is typed by the term A , which lives in the *type universe* \mathcal{U}_{ℓ} . Here, ℓ is a *universe level*, and can be either the impredicative level Ω , or a predicative level $n \in \{0, 1, 2, \dots\}$.⁴ As specified by rule **PROOF-IRR**, the universe \mathcal{U}_{Ω} is definitionally proof-irrelevant: any two terms t and u of type A are convertible as soon as A is in \mathcal{U}_{Ω} .

Given a level ℓ , we define its next level ℓ^+ by $\Omega^+ := 0$ and $n^+ := 1 + n$, and rule **UNIV** specifies that \mathcal{U}_{ℓ} has type \mathcal{U}_{ℓ^+} . Note that, in the rules of Figs. 1 and 2, we omit the level ℓ in $\Gamma \vdash_{\ell}^{\equiv} t : A$ when A is of the form $\mathcal{U}_{\ell'}$ to avoid the redundant annotation ℓ^+ .

Aside from observational equality and accessibility, which we explain later, the theory includes dependent functions (with η -conversion) as well as natural numbers, in order to illustrate how general inductive types can be handled. While the type of natural numbers \mathbb{N} lives in \mathcal{U}_0 , the dependent function type $\Pi_{\ell, \ell'}(x : A). B$ formed with $A : \mathcal{U}_{\ell}$ and $B : \mathcal{U}_{\ell'}$ lives in the universe $\mathcal{U}_{\ell \vee \ell'}$, where $\ell \vee \ell'$ is defined by $\ell \vee \Omega := \Omega$, $\Omega \vee \ell := \ell$ and $n \vee n' := \max(n, n')$.

Fully annotated syntax. As can be seen in the typing rules, we adopt a *fully annotated* syntax, by writing application as $t @_{\ell, \ell'}^{x : A. B} u$, abstraction as $\lambda_{\ell, \ell'}^{x : A. B} x. t$, etc. We do so as the annotations ensure that well-typed terms can be organized into initial models for algebraic specifications of the two type theories [Brunerie et al. 2019; Uemura 2021]—one could in principle work directly at this algebraic level, but formalization of such developments in proof assistants is still a challenge [Altenkirch and Kapozi 2016]. Nevertheless, in order to avoid clutter, we allow ourselves to informally omit these annotations in some cases, e.g., writing $t u$ for application and $\lambda x. t$ for abstraction. In particular, for equality $\mathbf{Eq}^n(A, x, y)$, we omit the

³Often called homotopy canonicity in the context of *Homotopy Type Theory*.

⁴In Rocq syntax, one writes \mathbf{Type}_n for \mathcal{U}_n and \mathbf{SProp} for \mathcal{U}_{Ω} .

CTX-NIL	CTX-CONS	VAR	Ax	CONV	UNIV
$\frac{}{\vdash \cdot}$	$\frac{\vdash \Gamma \quad \Gamma \vdash A : \mathcal{U}_\ell}{\vdash \Gamma, x :^\ell A}$	$\frac{\vdash \Gamma \quad (x :^\ell A) \in \Gamma}{\Gamma \vdash^\ell x : A}$	$\frac{\vdash \Gamma \quad (c : A) \in \Sigma}{\Gamma \vdash^\Omega c : A}$	$\frac{\Gamma \vdash^\ell t : A \quad \Gamma \vdash A \equiv B : \mathcal{U}_\ell}{\Gamma \vdash^\ell t : B}$	$\frac{\vdash \Gamma}{\vdash \Gamma}$
Π-FORM		FUN		APP	
$\frac{\Gamma \vdash A : \mathcal{U}_\ell \quad \Gamma, x : A \vdash B : \mathcal{U}_{\ell'}}$		$\frac{\Gamma \vdash A : \mathcal{U}_\ell \quad \Gamma, x : A \vdash B : \mathcal{U}_{\ell'}}{\Gamma, x : A \vdash^\ell t : B}$		$\frac{\Gamma \vdash A : \mathcal{U}_\ell \quad \Gamma, x : A \vdash B : \mathcal{U}_{\ell'}}{\Gamma \vdash^\ell t : \Pi_{\ell, \ell'}(x : A). B}$	
$\frac{}{\vdash \Pi_{\ell, \ell'}(x : A). B : \mathcal{U}_{\ell \vee \ell'}}$		$\frac{}{\Gamma \vdash^\ell \lambda_{\ell, \ell'}^{x : A. B} x. t : \Pi_{\ell, \ell'}(x : A). B}$		$\frac{\Gamma \vdash^\ell t : \Pi_{\ell, \ell'}(x : A). B \quad \Gamma \vdash^\ell u : A}{\Gamma \vdash^\ell t @_{\ell, \ell'}^{x : A. B} u : B[x := u]}$	
N-FORM	ZERO	SUCC	N-ELIM		EQ-FORM
$\frac{}{\vdash \Gamma}$	$\frac{}{\vdash \Gamma}$	$\frac{\vdash \Gamma \quad n : \mathbb{N}}{\vdash \Gamma \vdash^0 \mathbf{S}(n) : \mathbb{N}}$	$\frac{\Gamma, m : \mathbb{N} \vdash P : \mathcal{U}_\ell \quad \Gamma \vdash^\ell t_0 : P[m := 0]}{\Gamma, n : \mathbb{N}, x : P[m := n] \vdash^\ell t_S : P[m := \mathbf{S}(n)]}$	$\frac{\Gamma \vdash^\ell \mathbf{N}\text{-el}^\ell(m.P, t_0, nx.t_S, n) : P[m := n]}{\Gamma \vdash^0 n : \mathbb{N}}$	$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 b : A}{\Gamma \vdash \mathbf{Eq}^n(A, a, b) : \mathcal{U}_\Omega}$
REFL		CAST		TRANSP	
$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A}{\Gamma \vdash^\Omega \mathbf{refl}^n(a, A) : \mathbf{Eq}^n(A, a, a)}$		$\frac{\Gamma \vdash A : \mathcal{U}_\ell \quad \Gamma \vdash B : \mathcal{U}_\ell \quad \Gamma \vdash^\ell e : \mathbf{Eq}(\mathcal{U}_\ell, A, B) \quad \Gamma \vdash^\ell a : A}{\Gamma \vdash^\ell \mathbf{cast}^\ell(A, B, e, a) : B}$		$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A \quad \Gamma, x : A \vdash P : \mathcal{U}_\Omega \quad \Gamma \vdash^\Omega p : P[x := a] \quad \Gamma \vdash^0 b : A \quad \Gamma \vdash^\Omega e : \mathbf{Eq}^n(A, a, b)}{\Gamma \vdash^\Omega \mathbf{transp}^n(A, a, x.P, p, b, e) : P[x := b]}$	
EQ-Π ₁			EQ-Π ₂		
$\frac{\Gamma \vdash A_i : \mathcal{U}_\ell \quad \Gamma, x : A_i \vdash B_i : \mathcal{U}_n \quad (\text{for } i = 1, 2)}{\Gamma \vdash^\Omega e : \mathbf{Eq}(\mathcal{U}_{\ell \vee n}, \Pi(x : A_1). B_1, \Pi(x : A_2). B_2)}$		$\frac{\Gamma \vdash A_i : \mathcal{U}_\ell \quad \Gamma, x : A_i \vdash B_i : \mathcal{U}_n \quad (\text{for } i = 1, 2) \quad \Gamma \vdash^\Omega e : \mathbf{Eq}(\mathcal{U}_{\ell \vee n}, \Pi(x : A_1). B_1, \Pi(x : A_2). B_2) \quad \Gamma \vdash^\ell a_2 : A_2 \quad a_1 := \mathbf{cast}^\ell(A_2, A_1, \Pi_{\text{inj1}}^{\ell, n}(A_1, x.B_1, A_2, x.B_2, e), a_2)}{\Gamma \vdash^\Omega \Pi_{\text{inj1}}^{\ell, n}(A_1, x.B_1, A_2, x.B_2, e) : \mathbf{Eq}(\mathcal{U}_\ell, A_2, A_1)}$			
ACC-FORM	ACC-IN			ACC-INV	
$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A \quad \Gamma, x : A, y : A \vdash R : \mathcal{U}_\Omega}{\Gamma \vdash \mathbf{Acc}^n(A, xy.R, a) : \mathcal{U}_\Omega}$	$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A \quad \Gamma, x : A, y : A \vdash R : \mathcal{U}_\Omega \quad \Gamma \vdash^\Omega p : \Pi(b : A). b \prec_R a \rightarrow \mathbf{Acc}^n(A, xy.R, b)}{\Gamma \vdash^\Omega \mathbf{acc-in}^n(A, xy.R, a, p) : \mathbf{Acc}^n(A, xy.R, a)}$			$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A \quad \Gamma, x : A, y : A \vdash R : \mathcal{U}_\Omega \quad \Gamma \vdash^\Omega p : \mathbf{Acc}^n(A, xy.R, a) \quad \Gamma \vdash^0 b : A \quad \Gamma \vdash^\Omega r : b \prec_R a}{\Gamma \vdash^\Omega \mathbf{acc-inv}^n(A, xy.R, a, p, b, r) : \mathbf{Acc}^n(A, xy.R, b)}$	
ACC-EL					
$\frac{\Gamma \vdash^\Omega q : \mathbf{Acc}^n(A, xy.R, a)}{\Gamma \vdash^\ell \mathbf{acc-el}^{n, \ell}(A, xy.R, a, x.P, az.p, q) : P[x := a]}$	$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A \quad \Gamma, x : A, y : A \vdash R : \mathcal{U}_\Omega \quad \Gamma, x : A \vdash P : \mathcal{U}_\ell \quad \Gamma, a : A, z : \Pi(b : A). b \prec_R a \rightarrow P[x := b] \vdash^\ell p : P[x := a]}{\Gamma \vdash^\ell \mathbf{acc-el}^{n, \ell}(A, xy.R, a, x.P, az.p, q) : P[x := a]}$				
ACC-EL-PROP					
$\frac{\Gamma \vdash A : \mathcal{U}_n \quad \Gamma \vdash^0 a : A \quad \Gamma, x : A, y : A \vdash R : \mathcal{U}_\Omega \quad \Gamma \vdash^\Omega q : \mathbf{Acc}(A, xy.R, a) \quad \Gamma, x : A \vdash P : \mathcal{U}_n' \quad \Gamma, a : A, z : \Pi(b : A). b \prec_R a \rightarrow P[x := b] \vdash^\ell p : P[x := a] \quad f := \lambda br. \mathbf{acc-el}^{n, n'}(A, xy.R, b, x.P, az.p, \mathbf{acc-inv}^n(A, xy.R, a, q, b, r))}{\Gamma \vdash^\Omega \mathbf{acc-el-comp}^{n, n'}(A, xy.R, a, x.P, az.p, q) : \mathbf{Eq}(P[x := a], \mathbf{acc-el}^{n, n'}(A, xy.R, a, x.P, az.p, q), p[z := f, a := a])}$					

Figure 1: Common typing rules for $\mathcal{T}_{\text{Acc}}^-$ and $\mathcal{T}_{\text{Acc}}^\equiv$ (Π)

n superscript when the carrier type A is of the form \mathcal{U}_ℓ , similarly to our convention for level annotations on the typing judgment.

Axioms. The type system is actually parameterized by a *signature* Σ (Π), containing the declaration of axioms $c : P$, where P lives in \mathcal{U}_Ω , and that can be introduced by the rule Ax. Although Σ can be freely extended by users, we will assume that it contains at least the axiom Π_{ext} for *function extensionality*, that is used in the proof of § 4. This axiom is justified in presence of observational equality in the work of Pujet et al. [2025]; Pujet and Tabareau [2022, 2023]. It states that, given f_1, f_2 of type $\Pi(x : A). B$, pointwise equality $\Pi(x : A). \mathbf{Eq}(B, f_1 x, f_2 x)$ implies function equality $\mathbf{Eq}(\Pi(x : A). B, f_1, f_2)$.

We further assume that the type of any axiom declared in Σ is well typed in $\mathcal{T}_{\text{Acc}}^\equiv$ if it is well-typed in $\mathcal{T}_{\text{Acc}}^-$ (Π), an assumption

that is validated by the common axioms one uses in practice, such as function extensionality and excluded middle.

Observational equality. In order to be compatible with definitional proof irrelevance, our theories use *observational equality* [Altenkirch et al. 2007; Pujet and Tabareau 2022]. The gist of this flavor of equality is that it is eliminated via a type coercion operator (cast) that computes by case analysis on types, instead of the usual J eliminator that computes by discriminating the equality proof—which is unreasonable in the presence of definitional proof irrelevance.

Type coercions between two identical, non-parameterized types such as \mathbb{N} and \mathcal{U}_ℓ can be simply erased (a consequence of rule CAST-REFL). When applied between two function types, cast returns a function which first casts its argument to the domain of the original function, invokes it, and then casts the result back to the expected

$$\begin{array}{c}
\begin{array}{c}
\text{SYM} \quad \Gamma \vdash^\ell t \equiv u : A \quad \text{TRANS} \quad \Gamma \vdash^\ell t \equiv u : A \quad \Gamma \vdash^\ell u \equiv v : A \\
\hline
\Gamma \vdash^\ell u \equiv t : A \quad \Gamma \vdash^\ell t \equiv v : A
\end{array}
\quad
\begin{array}{c}
\eta\text{-EQ} \quad \Gamma \vdash A : \mathcal{U}_\ell \quad \Gamma, x : A \vdash B : \mathcal{U}_{\ell'} \\
\Gamma \vdash^{\ell \vee \ell'} f_i : \Pi(x : A). B \quad (\text{for } i = 1, 2) \\
\Gamma, x : A \vdash^{\ell'} f_i x \equiv f_2 x : B \\
\hline
\Gamma \vdash^{\ell \vee \ell'} f_1 \equiv f_2 : \Pi(x : A). B
\end{array}
\quad
\begin{array}{c}
\text{PROOF-IRR} \quad \Gamma \vdash^\Omega t : A \quad \Gamma \vdash^\Omega u : A \\
\hline
\Gamma \vdash^\Omega t \equiv u : A
\end{array}
\\
\begin{array}{c}
\text{CONV-CONV} \quad \Gamma \vdash^\ell t \equiv u : A \quad \Gamma \vdash A \equiv B : \mathcal{U}_\ell \\
\hline
\Gamma \vdash^\ell t \equiv u : B
\end{array}
\quad
\begin{array}{c}
\beta\text{-CONV} \quad \Gamma \vdash A : \mathcal{U}_\ell \quad \Gamma, x : A \vdash B : \mathcal{U}_{\ell'} \\
\Gamma, x : A \vdash^{\ell'} t : B \quad \Gamma \vdash^\ell u : A \\
\hline
\Gamma \vdash^{\ell'} (\lambda x^{A,B}. x. t) @_{\ell, \ell'}^{x:A, B} u \equiv t[x := u] : B[x := u]
\end{array}
\quad
\begin{array}{c}
\text{N-ELIM-ZERO} \quad \Gamma, m : \mathbb{N} \vdash P : \mathcal{U}_\ell \quad \Gamma \vdash^\ell t_0 : P[m := 0] \\
\Gamma, n : \mathbb{N}, x : P[m := n] \vdash^\ell t_S : P[m := \text{S}(n)] \quad \Gamma \vdash n : \mathbb{N} \quad t_n := \text{N-el}^\ell(m. P, t_0, nx. t_S, n) \\
\hline
\Gamma \vdash^\ell \text{N-el}^\ell(m. P, t_0, nx. t_S, \text{S}(n)) \equiv t_S[n := n, x := t_n] : P[m := \text{S}(n)]
\end{array}
\\
\begin{array}{c}
\text{CAST-PI} \quad \Gamma \vdash A_i : \mathcal{U}_\ell \quad \Gamma, x : A_i \vdash B_i : \mathcal{U}_n \quad (\text{for } i = 1, 2) \quad \Gamma \vdash^\Omega e : \text{Eq}(\mathcal{U}_{\ell \vee n}, \Pi(x : A_1). B_1, \Pi(x : A_2). B_2) \\
\Gamma \vdash^{\ell \vee n} f : \Pi(x : A_1). B_1 \quad a_1 := \text{cast}^\ell(A_2, A_1, \Pi_{\text{inj}1}(A_1, x. B_1, A_2, x. B_2, e), a_2) \quad e' := \Pi_{\text{inj}2}(A_1, x. B_1, A_2, x. B_2, e, a_2) \\
\hline
\Gamma \vdash^{\ell \vee n} \text{cast}^{\ell \vee n}(\Pi(x : A_1). B_1, \Pi(x : A_2). B_2, e, f) \equiv \lambda a_2. \text{cast}^n(B_1[x := a_1], B_2[x := a_2], e', f a_1) : \Pi(x : A_2). B_2
\end{array}
\quad
\begin{array}{c}
\text{CAST-REFL} \quad \Gamma \vdash A : \mathcal{U}_\ell \\
\Gamma \vdash^\Omega e : \text{Eq}(\mathcal{U}_\ell, A, A) \quad \Gamma \vdash^\ell t : A \\
\hline
\Gamma \vdash^\ell \text{cast}^\ell(A, A, e, t) \equiv t : A
\end{array}
\end{array}$$

Figure 2: Common conversion rules for $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$ (congruence rules omitted) (☞)

type (as specified in **CAST-PI**). Here, we draw the reader’s attention to an important subtlety: since `cast` computes by making recursive calls on subtypes, we must impose that type formers in proof-relevant universes (\mathcal{U}_n with $n = 0, 1, \dots$) are injective. In the case of function types, this is achieved by the symbols $\Pi_{\text{inj}1}$ and $\Pi_{\text{inj}2}$, used in rule **CAST-PI**.

Aside from `cast`, observational equality supports a `transp` operator for eliminating into proof irrelevant types. From `cast` and `transp`, it is possible to derive the usual J eliminator, which computes as expected thanks to rule **CAST-REFL** [Pujet et al. 2025; Pujet and Tabareau 2022].

Accessibility. To support definitions by well-founded recursion, our theory features an *accessibility* predicate. Given a term a of type $A : \mathcal{U}_\ell$ and a binary relation R on this type, the type $\text{Acc}^\ell(A, R, a)$ asserts that a is *accessible*—a constructive form of well-foundedness—for the relation R . Importantly, its eliminator `acc-el` may target proof-relevant types P in arbitrary universes, as can be seen in the typing rule **ACC-EL** (there and in the other rules, we write $b \prec_R a$ instead of $R[x := b, y := a]$ to avoid clutter).

Both theories $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$ feature the rule **ACC-EL-PROP**, stating the computational rule for `acc-el` propositionally. However, $\mathcal{T}_{\text{Acc}}^=$ additionally feature the following rule **ACC-EL-DEF**, including the computation rule as part of the conversion. The symbol `acc-el-comp` is therefore redundant in $\mathcal{T}_{\text{Acc}}^=$, yet we chose to have it so that $\mathcal{T}_{\text{Acc}}^=$ is included in $\mathcal{T}_{\text{Acc}}^{\equiv}$, easing the statement of conservativity.

$$\begin{array}{c}
\text{ACC-EL-DEF} \\
(\text{same premises as ACC-EL-PROP, replacing } \vdash \text{ with } \vdash^=) \\
\hline
\Gamma \vdash^= \text{acc-el}^{n, n'}(A, xy. R, a, x. P, az. p, q) \equiv p[z := f, a := a] : P[x := a]
\end{array}$$

Aside from the introduction and elimination rules for `Acc`, both theories also include a symbol `acc-inv` which, given a proof of that a is accessible, asserts that all b smaller than a are also accessible. This fact is derivable from `acc-el`, so `acc-inv` is actually redundant. Yet,

because `acc-inv` is used to state rules **ACC-EL-DEF** and **ACC-EL-PROP**, its addition simplifies writing, in particular in the formalization.

Metatheoretic properties. We formally prove in Rocq that both theories satisfy the basic properties expected of all type theories: weakening (☞), substitution (☞), as well as *validity* (☞), asserting that $\Gamma \vdash^\ell t : A$ implies $\vdash \Gamma$ and $\Gamma \vdash A : \mathcal{U}_\ell$, and that $\Gamma \vdash^\ell t_1 \equiv t_2 : A$ implies $\Gamma \vdash^\ell t_i : A$ for $i = 1, 2$.

Moreover, aside from minor syntactic differences, $\mathcal{T}_{\text{Acc}}^=$ is an extension of CIC_{obs} with new symbols, but, crucially, no equations (aside from congruence rules). Therefore, *decidability of typing* and *injectivity of function types* of $\mathcal{T}_{\text{Acc}}^=$ directly follow from the fact that these properties hold for CIC_{obs} [Pujet et al. 2025]: indeed, the extra symbols of $\mathcal{T}_{\text{Acc}}^=$ can be understood in CIC_{obs} simply as extra variables in the context. Importantly, these properties also ensure that, in the setting of a practical implementation, a user-friendly unannotated syntax can be correctly elaborated into the core verbose syntax, using *bidirectional typing* [Felicissimo 2025; Lennon-Bertrand 2021].

3 Canonicity of $\mathcal{T}_{\text{Acc}}^=$

In this section we prove that the theory $\mathcal{T}_{\text{Acc}}^=$ enjoys canonicity, despite its conversion being undecidable. For this, we adapt the logical relation for decidability of typing of Abel et al. [2018], but strip out all the machinery for handling open terms and neutrals, which are not needed for canonicity.

Convention 3.1. In this section, all typing judgments refer to the theory $\mathcal{T}_{\text{Acc}}^=$, so we just write \vdash^ℓ instead of $\vdash^=$.

Metatheory and assumptions. The metatheory of our proof is CIC, as witnessed by our Rocq formalization. We however need to work under the two following assumptions. To state them, let us say that a term A is a *canonical relevant type* if $A = \mathbb{N}$ or $A = \mathcal{U}_\ell$ or $A = \Pi_{\ell, n}(x : T). U$ (note that we ask the codomain level to be

different from Ω , otherwise the whole type would live in \mathcal{U}_Ω). We then say that two canonical relevant types A and B have the same head when $A = B = \mathbb{N}$ or $A = B = \mathcal{U}_\ell$ or $A = \Pi_{\ell, \mathbf{n}}(x : T). U$ and $B = \Pi_{\ell', \mathbf{n}'}(x : T'). U'$ with $\ell = \ell'$ and $\mathbf{n} = \mathbf{n}'$.

Assumption A. (甫) If A and B are canonical proof-relevant types that do not have the same head, then for no e we have $\vdash e :$

$$\text{Eq}(\mathcal{U}_\ell, A, B).$$

Assumption B. (甫) If $\vdash e : \text{Acc}^{\mathbf{n}}(A, xy.R, a)$ for some e , then the relation \tilde{R} that is defined on closed terms of type A by $\tilde{R}(t, u)$ iff $\exists p. \vdash p : t \prec_R u$ is well founded.

In § 5 we show that these assumptions can be proven in set theory by defining a model of $\mathcal{T}_{\text{Acc}}^{\equiv}$, assuming that the user-specified axioms in Σ are validated in set theory. Viewing CIC as an internal language for sets therefore yields an assumption-free proof. We conjecture that these assumptions can be proved in other (possibly more constructive) metatheories.

Reduction. Following Abel et al. [2018], to define the logical relation we first need to consider a deterministic weak-head reduction judgment, written $\Gamma \vdash t \longrightarrow u : A$ (甫). We omit the definition here for brevity, but most of its rules are adapted from the main conversion rules for $\mathcal{T}_{\text{Acc}}^{\equiv}$. Let us however mention that, because of the use of fully annotated syntax, the previous rule for β -equality needs also to be further adapted to allow type annotations to differ, as long as they remain convertible. We therefore have the following reduction rule:

$$\begin{array}{c} \beta\text{-CONV} \\ \dfrac{\Gamma \vdash A \equiv A' : \mathcal{U}_\ell \quad \Gamma, x : A \vdash B \equiv B' : \mathcal{U}_{\ell'} \\ \quad \Gamma, x : A \vdash^{\ell'} t : B \quad \Gamma \vdash^{\ell} u : A }{\Gamma \vdash^{\ell'} (\lambda^{x:A'.B'} x. t) @^{x:A.B} t \longrightarrow t[x := u] : B[x := u]} \end{array}$$

We then write $\Gamma \vdash t \longrightarrow u : A$ (甫) for the reflexive-transitive closure of reduction, and $\Gamma \vdash t \searrow u : A$ (甫) when $\Gamma \vdash t \longrightarrow u : A$ and u is irreducible.

The logical relation. We define the logical relation as a predicate $\vdash^\ell A \equiv B \downarrow R$, asserting that A and B are *reducibly convertible* at the universe \mathcal{U}_ℓ , and yielding a reducibility binary relation R for terms of type A or B .

For this, we first define the following relations, which capture the term-level reducibility relations for elements of the function and natural number types. The relation $\hat{\mathbb{N}}$ (甫) specifies that two terms t, u are reducibly convertible natural numbers when they iteratively reduce to the same canonical natural number. The relation $\hat{\Pi}_{\ell, \mathbf{n}}[T_1, T_2, R_T, U_1, U_2, R_U]$ (甫) specifies that two terms f_1, f_2 are reducibly convertible functions when they are convertible and, omitting annotations, $f_1 t_1$ and $f_2 t_2$ are related by $R_U[t_1, t_2]$ whenever t_1, t_2 are related by R_T . The relation R_U is thus parameterized over pairs of terms.

$$\begin{array}{c} \vdash t_i \searrow \mathbf{S}(u_i) : \mathbb{N} \quad \hat{\mathbb{N}}(u_1, u_2) \\ \hline \hat{\mathbb{N}}(t_1, t_2) \end{array} \quad \begin{array}{c} \vdash t_i \searrow \mathbf{0} : \mathbb{N} \\ \hline \hat{\mathbb{N}}(t_1, t_2) \end{array}$$

$$\begin{array}{c} \vdash f_1 \equiv f_2 : \Pi_{\ell, \mathbf{n}}(x : T_1). U_1 \\ \forall t_1 t_2. R_T(t_1, t_2) \Rightarrow R_U[t_1, t_2](f_1 @^{x:T_1.U_1} t_1, f_2 @^{x:T_2.U_2} t_2) \\ \hline \hat{\Pi}_{\ell, \mathbf{n}}[T_1, T_2, R_T, U_1, U_2, R_U](f_1, f_2) \end{array}$$

Next, we define $\vdash^\ell A_1 \equiv A_2 \downarrow R$ (甫) by the following rules. The definition is actually also by well-founded induction over ℓ (considering Ω as smaller than all the predicative levels), so we assume this judgment to be already defined for all smaller ℓ . In these rules, we write $R \leftrightarrow R'$ when the relations R and R' are equivalent.

$$\begin{array}{c} \dfrac{\vdash A_1 \equiv A_2 : \mathcal{U}_\Omega \quad R \leftrightarrow \{(t_1, t_2) \mid \vdash^\Omega t_1 \equiv t_2 : A_1\}}{\vdash^\Omega A_1 \equiv A_2 \downarrow R} \\ \\ \dfrac{\vdash A_i \searrow \mathcal{U}_\ell : \mathcal{U}_{\ell^+} \quad R \leftrightarrow \{(B_1, B_2) \mid \exists R'. \vdash^\ell B_1 \equiv B_2 \downarrow R'\}}{\vdash^{\ell^+} A_i \equiv A_2 \downarrow R} \quad \dfrac{\vdash A_i \searrow \mathbb{N} : \mathcal{U}_0 \quad R \leftrightarrow \hat{\mathbb{N}}}{\vdash^0 A_1 \equiv A_2 \downarrow R} \\ \\ \dfrac{\vdash A_i \searrow \Pi_{\ell, \mathbf{n}}(x : T_i). U_i : \mathcal{U}_{\ell \vee \mathbf{n}} \quad x : T_1 \vdash U_1 \equiv U_2 : \mathcal{U}_{\mathbf{n}} \quad \vdash^\ell T_1 \equiv T_2 \downarrow R_T \quad \forall t_1 t_2. R_T(t_1, t_2) \Rightarrow \vdash^{\mathbf{n}} U_1[x := t_1] \equiv U_2[x := t_2] \downarrow R_U[t_1, t_2] \quad R \leftrightarrow \hat{\Pi}_{\ell, \mathbf{n}}[T_1, T_2, R_T, U_1, U_2, R_U]}{\vdash^{\ell \vee \mathbf{n}} A_1 \equiv A_2 \downarrow R} \end{array}$$

Because we are in a setting with definitional proof irrelevance, we do not need to evaluate proofs—and very likely cannot, given the result of Abel and Coquand [2020]—and so the logical relation at $\ell = \Omega$ only asks for convertibility. For relevant types, the rules state that A_1 and A_2 are reducibly convertible when they reduce to the same type former, and the associated relation R is equivalent to the expected one. In the case of function types, we additionally ask for T_1 and T_2 to be reducibly convertible with relation R_T , and for $U_1[x := t_1]$ and $U_2[x := t_2]$ to be reducibly convertible with relation $R_U[t_1, t_2]$ for all t_1, t_2 related by R_T . In the case for the universe type, the associated relation R relates B_1, B_2 iff we have $\vdash^\ell B_1 \equiv B_2 \downarrow R'$ for some R' . This definition therefore mentions \vdash in a non-strictly positive way, yet this is justified because it is used with ℓ which is strictly smaller than ℓ^+ , and so \vdash^ℓ is already fully defined at this stage. Finally, note that, interestingly, there are no rules for handling accessibility and equality, given that such types live in \mathcal{U}_Ω .

Remark 3.1. Compared with Abel et al. [2018]; Pujet et al. [2025], we only have the binary version of the logical relation and define it simply as an inductive predicate, instead of relying on *induction-recursion*; two changes which, we believe, make the definition shorter and easier to understand. On this specific aspect, our definitions are hence closer to the ones of Gratzer et al. [2019]; Jang et al. [2025].

Validity. As usual with canonicity proofs, we use the logical relation to define a model for $\mathcal{T}_{\text{Acc}}^{\equiv}$ that will allow us to directly derive canonicity. Of course, the model cannot interpret conversion simply by $\exists R. \vdash A \equiv B \downarrow R$. Indeed, a model needs to be defined for all terms, including *open* terms. The correct interpretation is instead captured by the notion of *validity*. For its definition, we first need to extend the logical relation to substitutions, in the following manner (甫).

$$\begin{array}{c} \vdash \sigma_1 \equiv \sigma_2 : \Gamma \\ \vdash^\ell A[\sigma_1] \equiv A[\sigma_2] \downarrow R \quad R(t_1, t_2) \\ \hline \vdash \cdot \equiv \cdot : (\cdot) \quad \vdash (\sigma_1, x := t_1) \equiv (\sigma_2, x := t_2) : \Gamma, x :^\ell A \end{array}$$

Now, the validity judgments (甫) can be defined as follows.

- $\Gamma \models^\ell t \equiv u : A$ holds if, for all σ_1, σ_2 , $\Vdash \sigma_1 \equiv \sigma_2 : \Gamma$ implies $\Vdash^\ell A[\sigma_1] \equiv A[\sigma_2] \downarrow R$ and $R(t[\sigma_1], u[\sigma_2])$ for some R .
- $\Gamma \models^\ell t : A$ holds if $\Gamma \not\models^\ell t \equiv t : A$ holds.

Our main goal is now to show that the relations $\Gamma \models^\ell t : A$ and $\Gamma \models^\ell t \equiv u : A$ are indeed models of $\mathcal{T}_{\text{Acc}}^\equiv$ —this is exactly the *fundamental theorem* of the logical relation.

Basic properties of the logical relation. Before proving the fundamental theorem, we first establish some usual basic properties [Abel et al. 2018].

LEMMA 3.1 (ESCAPE 甫). *Suppose $\Vdash^\ell A \equiv B \downarrow R$. Then we have $\vdash A \equiv B : \mathcal{U}_\ell$. Moreover, $R(t, u)$ implies $\vdash t \equiv u : A$ for all t, u .*

The above lemma is the reason we add conversion premises between f_1, f_2 and U_1, U_2 in the rules for functions in the logical relation. Without them, any two terms f_1, f_2 would for instance be related by $\hat{\Pi}$ as soon as the relation R_T is empty (eg., if $T_1 = T_2 = \perp$ with $\perp := \Pi P : \mathcal{U}_\Omega . P$, in which case $R_T(t_1, t_2)$ is equivalent to $\vdash t_1 \equiv t_2 : \perp$).

LEMMA 3.2 (CLOSURE UNDER REDUCTION AND ANTI-REDUCTION 甫/甫). *Assume $\Vdash^\ell A_1 \equiv A_2 \downarrow R$.*

- If $\vdash A_i \longrightarrow A'_i : \mathcal{U}_\ell$ (for $i = 1, 2$) or $\vdash A'_i \longrightarrow A_i : \mathcal{U}_\ell$ (for $i = 1, 2$) then $\Vdash^\ell A'_1 \equiv A'_2 \downarrow R$.
- If $R(t_1, t_2)$ and either $\vdash t_i \longrightarrow t'_i : \mathcal{U}_\ell$ (for $i = 1, 2$) or $\vdash t'_i \longrightarrow t_i : \mathcal{U}_\ell$ (for $i = 1, 2$) then $R(t'_1, t'_2)$.

Compared with prior work, the use of a fully annotated syntax introduces the need for the following annotation conversion result for applications, used to show irrelevance of the logical relation (Lemma 3.4). The proof of Lemma 3.3 goes by showing a stronger statement (甫) with a more general annotation conversion relation (甫), but we omit it here for brevity.

LEMMA 3.3 (ANNOTATION CONVERSION 甫/甫). *Assume we have $\Vdash^\ell A \equiv B \downarrow R$ and $\vdash T_1 \equiv T_2 : \mathcal{U}_\ell$ and $x : T_1 \vdash U_1 \equiv U_2 : \mathcal{U}_{\ell'}$. If $R(t @_{\ell, \ell'}^{x: T_1, U_1} u, v)$ then $R(t @_{\ell, \ell'}^{x: T_2, U_2} u, v)$, and if $R(v, t @_{\ell, \ell'}^{x: T_1, U_1} u)$ then $R(v, t @_{\ell, \ell'}^{x: T_2, U_2} u)$.*

LEMMA 3.4 (IRRELEVANCE 甫). *If $\Vdash^\ell A \equiv B \downarrow R$ and $\Vdash^\ell A \equiv B' \downarrow R'$ then $R \leftrightarrow R'$.*

LEMMA 3.5 (SYMMETRY 甫/甫). *If $\Vdash^\ell A \equiv B \downarrow R$ then $\Vdash^\ell B \equiv A \downarrow R$ and R is a symmetric relation.*

LEMMA 3.6 (TRANSITIVITY 甫/甫). *If $\Vdash^\ell A \equiv B \downarrow R$ and $\Vdash^\ell B \equiv C \downarrow R$ then $\Vdash^\ell A \equiv C \downarrow R$ and R is a transitive relation.*

Recall that a relation is a *partial equivalent relation* (PER) when it is symmetric and transitive.

LEMMA 3.7 (SUBSTITUTION REDUCIBILITY IS A PER 甫/甫). *The relation $\vdash _ \equiv _ : \Gamma$ is a PER for all Γ .*

The relation $\Vdash^\ell _ \equiv _ : A$ is a PER for all Γ, ℓ, A .

LEMMA 3.8 (VALIDITY IS A PER 甫/甫).

Fundamental theorem. The hardest step of the proof is showing the fundamental theorem, which establishes that the validity judgments correctly interpret the theory $\mathcal{T}_{\text{Acc}}^\equiv$.

THEOREM 3.9 (FUNDAMENTAL THEOREM 甫/甫). *If $\Gamma \models^\ell t : A$ then $\Gamma \models^\ell t : A$, and if $\Gamma \models^\ell t \equiv u : A$ then $\Gamma \models^\ell t \equiv u : A$.*

The proof of the fundamental theorem consists in showing that each of the typing rules holds when interpreting the judgments using validity. Most rules, such as the ones pertaining to functions and natural numbers, are handled similarly to prior work [Abel et al. 2018; Adjejj et al. 2024; Pujet et al. 2025]. The only interesting cases are *cast* and *acc-el*. The rules for *cast* are handled similarly to Pujet et al. [2025], so we will not detail the proof here, but simply mention that it relies on *Assumption A*.⁵

Handling accessibility. Let us now discuss the main novel aspect of this section: handling of the eliminator of accessibility in the proof of the fundamental theorem (Theorem 3.9). To illustrate the difficulty of handling *acc-el*, let us first explain the usual strategy for handling eliminators for positive types, focusing on the eliminator of naturals, *N-el*.

To prove that *N-el* is handled by the model, we must prove the following implication, represented here as an inference rule for readability purposes:

$$\frac{\Gamma, m : \mathbb{N} \models P : \mathcal{U}_\ell \quad \Gamma \models^\ell t_0 : P[m := 0] \quad \Gamma, n : \mathbb{N}, x : P[m := n] \models^\ell t_S : P[m := \mathbf{S}(n)] \quad \Gamma \models^0 n : \mathbb{N}}{\Gamma \models^\ell \mathbf{N}\text{-el}^\ell(m.P, t_0, nx.t_S, n) : P[m := n]}$$

Unfolding the definition of validity, we must show that, for all σ_1, σ_2 satisfying $\Vdash \sigma_1 \equiv \sigma_2 : \Gamma$, the terms $\mathbf{N}\text{-el}^\ell(\dots)[\sigma_1]$ and $\mathbf{N}\text{-el}^\ell(\dots)[\sigma_2]$ are reducibly convertible. Instantiating $\Gamma \models^0 n : \mathbb{N}$ with $\vdash \sigma_1 \equiv \sigma_2 : \Gamma$, we easily obtain that $\hat{\mathbf{N}}(n[\sigma_1], n[\sigma_2])$.

With $\hat{\mathbf{N}}(n[\sigma_1], n[\sigma_2])$ in hand, we can show the result by induction on its derivation.⁶ Indeed, we either have that $\vdash n[\sigma_i] \searrow 0 : \mathbb{N}$ or $\vdash n[\sigma_i] \searrow \mathbf{S}(u_i) : \mathbb{N}$ and $\hat{\mathbf{N}}(u_1, u_2)$. In both cases, we then conclude using the validity premises for t_0 and t_S and closure under anti-reduction, with the successor case also using the induction hypothesis.

Let us see now why the same approach breaks for *acc-el*.

$$\frac{\Gamma \models A : \mathcal{U}_\mathbf{n} \quad \Gamma \models^\mathbf{n} a : A \quad \Gamma, x : A, y : A \vdash R : \mathcal{U}_\Omega \quad \Gamma \models^\Omega q : \mathbf{Acc}(A, xy.R, a) \quad \Gamma, x : A \vdash P : \mathcal{U}_{\ell'} \quad \Gamma, a : A, z : \Pi(b : A). b \prec_R a \rightarrow P[x := b] \models^\ell p : P[x := a]}{\Gamma \models^\ell \mathbf{acc}\text{-el}^{\mathbf{n}, \ell'}(A, xy.R, a, x.P, az.p, q) : P[x := a]}$$

When instantiating $\Gamma \models q : \mathbf{Acc}^\mathbf{n}(A, xy.R, a)$ with $\Vdash \sigma_1 \equiv \sigma_2 : \Gamma$ we do not get any useful information for doing an induction anymore. Indeed, recall that the logical relation at level $\ell = \Omega$ is defined simply as conversion, so we only get $\vdash q[\sigma_1] \equiv q[\sigma_2] : \mathbf{Acc}^\mathbf{n}(A, xy.R, a)[\sigma_1]$.

⁵ Assumption A is actually not required by Pujet et al. [2025] for proving the fundamental theorem, as their logical relation includes neutral terms. On the other hand, for that same reason, their logical relation does not directly imply canonicity. To conclude it, they additionally need to rule out the existence of neutrals in the empty context, a fact that implies our Assumption A, and that they also establish using a set-theoretic model.

⁶ Actually, we first need to massage the validity premises for t_0 and t_S using $\Vdash \sigma_1 \equiv \sigma_2 : \Gamma$, but we deliberately simplify the description for clarity.

This is where [Assumption B](#) plays a critical role, as it allows us to deduce from $\vdash q[\sigma_1] : \text{Acc}^n(A, xy.R, a)[\sigma_1]$ that the relation $R[\sigma_1]$, defined on closed terms of type $A[\sigma_1]$ by $R[\sigma_1](t, u)$ iff $\exists p. \vdash p : t \prec_{R[\sigma_1]} u$, is well founded, allowing us to proceed by well-founded induction over it.

With the induction set up, the proof goes essentially in the same spirit as the one for [N-el](#), using the validity premise for p to construct reducibly convertible terms which are reducts of $\text{acc-el}^{n,\ell}(A, xy.R, a, x.P, az.p, q)[\sigma_1]$, and then concluding by closure under anti-reduction and the induction hypothesis. As usual with such proofs, the complete argument is full of administrative details—we refer the reader to the formalization for a detailed account (↗).

Canonicity. We obtain canonicity as a direct consequence of the definition of the logical relation and [Theorem 3.9](#).

COROLLARY 3.10 (CANONICITY FOR $\mathcal{T}_{\text{Acc}}^{\equiv}$). *If $\vdash t : \mathbb{N}$ then we have $\vdash t \equiv S^n(0) : \mathbb{N}$ for some n .*

Canonicity asserts the existence of a concrete numeral n such that t is convertible to $S^n(0)$, without saying how to compute it. Of course, in an actual implementation, one would like to employ the usual untyped reduction algorithm operating on unannotated terms, as in Rocq. We thus show an effective version of canonicity justifying this strategy.

For this, we first consider a grammar of unannotated terms in which application is written as $t u$, abstraction as $\lambda x.t$, etc (↗), and define an erasure function $|-|$ (↗) mapping a standard term to its unannotated version. Then, we redefine the previous notion of weak-head reduction for unannotated terms in a totally untyped way as the relation $t \rightarrow u$ (↗), from which we define $t \rightarrowtail u$ (↗) as its symmetric-transitive closure. Finally, we define $t \Downarrow n$ (↗) by $t \Downarrow 0$ when we have $t \rightarrowtail 0$, and $t \Downarrow n+1$ when we have both $t \rightarrowtail S(u)$ and $u \Downarrow n$.

COROLLARY 3.11 (EFFECTIVE CANONICITY FOR $\mathcal{T}_{\text{Acc}}^{\equiv}$). *If $\vdash t : \mathbb{N}$ then $\vdash t \equiv S^n(0) : \mathbb{N}$ for the unique n such that $|t| \Downarrow n$.*

4 Conservativity of $\mathcal{T}_{\text{Acc}}^{\equiv}$ over $\mathcal{T}_{\text{Acc}}^=$

We establish conservativity of $\mathcal{T}_{\text{Acc}}^{\equiv}$ over $\mathcal{T}_{\text{Acc}}^=$ using a translation technique inspired by [Winterhalter et al. \[2019\]](#). We present the key technical ingredients of the argument, while omitting some details that are fully formalized in Rocq.

Let us first give the high-level plan for the proof. The main idea is to define a translation from $\mathcal{T}_{\text{Acc}}^=$ to $\mathcal{T}_{\text{Acc}}^{\equiv}$ in which conversion is translated as propositional equality and the conversion rule is simulated by casting along the obtained equality proof. Translated terms then become decorated with occurrences of `cast`, and two occurrences of the same term might be decorated differently. We address this by showing the *fundamental lemma* of the translation, ensuring that different decorations of the same term can be shown equal in $\mathcal{T}_{\text{Acc}}^=$. With the fundamental lemma and the translation from $\mathcal{T}_{\text{Acc}}^=$ to $\mathcal{T}_{\text{Acc}}^{\equiv}$ proven, conservativity follows as a corollary.

Heterogeneous equality. As for [Winterhalter et al. \[2019\]](#), a key ingredient of our proof is the use of McBride’s *heterogeneous equality*, which allows to equate terms at different types. We define

$\text{HEq}^n(A, B, a, b)$ in $\mathcal{T}_{\text{Acc}}^=$ as⁷

$$\Sigma(e : \text{Eq}(\mathcal{U}_{\mathfrak{n}}, A, B)). \text{Eq}(B, \text{cast}(A, B, e, a), b)$$

For uniformity reasons, it will be more convenient to have HEq at all levels, so we extend the above definition with $\text{HEq}^{\Omega}(A, B, a, b) := \top$, where $\top := \Pi(P : \mathcal{U}_{\Omega}). P \rightarrow P$.

Decorations. As mentioned, our proof employs a *decoration* relation between terms of $\mathcal{T}_{\text{Acc}}^=$ and terms of $\mathcal{T}_{\text{Acc}}^{\equiv}$, that is essentially the identity up to `cast`. Formally, $t \sqsubset u$ (↗) is the least reflexive-transitive relation containing $a \sqsubset \text{cast}^{\ell}(A, B, a, e)$ for all ℓ, A, B, a, e and compatible with all constructors of the syntax. We extend \sqsubset pointwise to contexts (↗), and write \sim (↗) for the reflexive, symmetric, transitive closure of \sqsubset .

The fundamental lemma. To state the fundamental lemma, let us say that two contexts Γ_1 and Γ_2 are compatible (↗) if they have the same variables (modulo α -renaming) in the same order and annotated with the same levels. In this case, we define $\Gamma_1 * \Gamma_2$ (↗) as the context containing entries $x_1 :^{\ell} A_1, x_2 :^{\ell} A_2, \hat{x} : \text{HEq}^{\ell}(A_1, A_2, x_1, x_2)$ for each $x :^{\ell} A_i \in \Gamma_i$. We now come to the fundamental lemma:

LEMMA 4.1 (FUNDAMENTAL LEMMA). *Assume $t_1 \sim t_2$ and $\Gamma_i \vdash^{\mathfrak{n}} t_i : A_i$ for $i = 1, 2$ and that Γ_1 and Γ_2 are compatible. Then we have $\Gamma_1 * \Gamma_2 \vdash e : \text{HEq}^n(A_1, A_2, t_1, t_2)$ for some e .*

The proof is done by induction on $t_1 \sim t_2$, and crucially relies on various important properties of HEq —in particular its congruence laws, such as the following one:

$$\begin{aligned} \text{HEq-app-cong} : \text{HEq}(\Pi(x : A_1). B_1, \Pi(x : A_2). B_2, t_1, t_2) &\rightarrow \\ \text{HEq}(A_1, A_2, u_1, u_2) &\rightarrow \text{HEq}(B_1[x := u_1], B_2[x := u_2], t_1 u_1, t_2 u_2) \end{aligned}$$

Constructing all these proof-terms and building their typing derivations explicitly would be simply unfeasible, but thankfully we can leverage all the support provided by Rocq by *working internally to $\mathcal{T}_{\text{Acc}}^=$* . Concretely, we postulate sufficiently many primitives of our theory to turn Rocq into a proof assistant for the theory $\mathcal{T}_{\text{Acc}}^=$. With the help of user-level features such as implicit arguments and proof mode, showing the required HEq laws becomes a simple exercise (↗). These proofs then justify postulating their external statements (↗).

Decorating translation. With the fundamental lemma in hand, we now come to the main intermediate result leading to conservativity: the decorating translation. Its proof in turn requires multiple other intermediate lemmas, which are already discussed by [Winterhalter et al. \[2019\]](#) and can be found in our formalization.

LEMMA 4.2 (DECORATING TRANSLATION).

- If $\Gamma \vdash^{\ell} t : A$, then for all Γ' such that $\Gamma \sqsubset \Gamma'$ and $\vdash_{\mathfrak{n}} \Gamma'$, we have $\Gamma' \vdash^{\ell} t' : A'$ for some t', A' satisfying $t \sqsubset t', A \sqsubset A'$.
- If $\Gamma \vdash^{\mathfrak{n}} t \equiv u : A$, then for all Γ' such that $\Gamma \sqsubset \Gamma'$ and $\vdash_{\mathfrak{n}} \Gamma'$, we have $\Gamma' \vdash e : \text{Eq}^n(A', t', u')$ for some e, t', u', A' satisfying $t \sqsubset t', u \sqsubset u', A \sqsubset A'$.

⁷Recall that $\mathcal{T}_{\text{Acc}}^=$ does not feature dependent sums natively, yet the above one can be constructed with the *impredicative encoding*.

Compared with the development of Winterhalter et al. [2019], the presence of definitional proof irrelevance in the theory simplifies a bit the proof, as the above statement does not need to consider conversions between irrelevant terms ($\Gamma \vdash_{\equiv}^{\Omega} t \equiv u : A$).

Conservativity and canonicity. Together, Lemmas 4.1 and 4.2 directly entail conservativity, stating that all $\mathcal{T}_{\text{Acc}}^{\equiv}$ types inhabited in $\mathcal{T}_{\text{Acc}}^{\equiv}$ are also inhabited in $\mathcal{T}_{\text{Acc}}^{\equiv}$. In particular, all $\mathcal{T}_{\text{Acc}}^{\equiv}$ propositions provable in $\mathcal{T}_{\text{Acc}}^{\equiv}$ are hence also provable in $\mathcal{T}_{\text{Acc}}^{\equiv}$.

THEOREM 4.3 (CONSERVATIVITY OF $\mathcal{T}_{\text{Acc}}^{\equiv}$ OVER $\mathcal{T}_{\text{Acc}}^{\equiv}$). *If $\vdash_{\equiv} A : \mathcal{U}_{\ell}$ and $\vdash_{\equiv}^{\ell} t : A$ then we have $\vdash_{\equiv}^{\ell} u : A$ for some u .*

Combined with the (effective) canonicity result for $\mathcal{T}_{\text{Acc}}^{\equiv}$ (Corollary 3.11), we now derive its propositional version for $\mathcal{T}_{\text{Acc}}^{\equiv}$ —we skip here the non-effective statement (Corollary 3.10), which follows from the following stronger result.

COROLLARY 4.4 (PROPOSITIONAL CANONICITY FOR $\mathcal{T}_{\text{Acc}}^{\equiv}$). *If $\vdash_{\equiv} t : \mathbb{N}$ then, for the unique n such that $|t| \Downarrow n$, we have $\vdash_{\equiv} e : \text{Eq}(\mathbb{N}, t, S^n(0))$ for some e .*

5 Set-Theoretic Model

In this section, we build a model for $\mathcal{T}_{\text{Acc}}^{\equiv}$ in set theory, in order to justify not only its consistency, but also Assumptions A and B from §3, thereby completing the proof of canonicity. As $\mathcal{T}_{\text{Acc}}^{\equiv}$ is a subset of \mathcal{T}_{Acc} , this also yields a model for $\mathcal{T}_{\text{Acc}}^{\equiv}$. Our construction is mostly adapted from Pujet et al. [2025]; the main novelty here is that we formalized the main part of the argument.

Metatheory. Our model construction takes place in ZF set theory with a countable hierarchy of Grothendieck universes, embedded in the type theory of Rocq. (⌚)

Even though ZF is usually presented as a first-order theory, we allow ourselves to use Rocq’s higher-order logic in order to simplify the formalization. We argue that it is justified, given that the use of higher-order logic is consistent with set theory (assuming one additional inaccessible cardinal) [Obua 2006]. However, we do not use Rocq’s dependent types, meaning that we are effectively working in HOL with ZF axioms.

Concretely, we start by postulating a type ZFset as well as a relation $\in : \text{ZFset} \rightarrow \text{ZFset} \rightarrow \text{Prop}$. Then, following Obua [2006], we postulate the ZF axioms in Skolemized form, so that for each axiom asserting the existence of a set, we add a new constant and an axiom describing its behavior. For instance, the empty set axiom becomes:

Parameter $\emptyset : \text{ZFset}$.

Axiom $\text{ZEmpty} : \forall x, x \in \emptyset \rightarrow \text{False}$.

We postulate the Grothendieck universes as an infinite hierarchy of transitive sets $\mathbb{V}_0 \in \mathbb{V}_1 \in \mathbb{V}_2 \in \dots$ which are closed under the axioms of ZF. We also postulate Russell’s definite description operator to convert back and forth between higher-order functions and functional relations.

Constructions in set theory. (⌚) From this setup, we perform a series of constructions that let us use type theory as an internal language for our set theory. We start by reproducing the standard construction of cartesian products and function sets, along with their equations. Next, given $A : \text{ZFset}$ and $B : \text{ZFset} \rightarrow \text{ZFset}$, we define

their set-theoretic dependent sum $\Sigma A B$ and their set-theoretic dependent product $\Pi A B$, and we use the replacement axiom to prove that $\Pi A B, \Sigma A B \in \mathbb{V}_n$ whenever $A \in \mathbb{V}_n$ and $\forall x \in A, B x \in \mathbb{V}_n$. We define ω as the smallest set containing \emptyset and closed under successor, using the axioms of infinity and comprehension.

The higher-order model. (⌚) Thanks to our construction of set-theoretic dependent products and to set-theoretic equality, we can use ZF set theory as a logical framework [Harper et al. 1993]. We now use this logical framework to construct a *higher-order model* for $\mathcal{T}_{\text{Acc}}^{\equiv}$, meaning that we define a family of sets $\Omega, \mathbb{U}_0, \mathbb{U}_1, \mathbb{U}_2 \dots$ and show that they support all the rules of our theory (seen as a second-order generalized algebraic theory (SOGAT) [Kaposi and Xie 2024]). Because `cast` computes in $\mathcal{T}_{\text{Acc}}^{\equiv}$ by case analysis on types, we need to refine the standard set-theoretic universes by means of codes, along with associated decoding functions El_{ℓ} :

$$\begin{aligned} \Omega &:= \langle \mathcal{P} \{ \emptyset \} ; 0 ; \emptyset \rangle & \text{El}_{\Omega} A &:= A \\ \mathbb{U}_n &:= \langle \mathbb{V}_n \times \omega \times \mathbb{V}_n ; 1 ; \emptyset \rangle & \text{El}_n A &:= \text{fst } A \end{aligned}$$

Given $A \in \text{El}_{n+1} \mathbb{U}_n$, we denote its three components by $\text{El}_n A$, $\text{hd } A$ and $\text{lb1 } A$ respectively. The first is the set of inhabitants of A , the second is a natural number identifier for the head constructor of A , and the third encodes the sets from which A has been built (this will come into play for the injectivity of dependent products). From these definitions, it should be clear that we have $\Omega \in \text{El}_0 \mathbb{U}_0$ and $\mathbb{U}_n \in \text{El}_{n+1} \mathbb{U}_{n+1}$. Furthermore, the inhabitants of Ω are proof-irrelevant: given $A \in \Omega$, all of its inhabitants are equal.

Dependent products. (⌚) Our higher-order model supports dependent products, which have two separate definitions—one for the predicative case and one for the impredicative case:

$$\begin{aligned} \widehat{\Pi}_{\ell, n} A B &:= \langle \Pi (\text{El}_{\ell} A) (\lambda a. \text{El}_n (B a)) ; 2 ; \langle \ell ; n ; A ; B \rangle \rangle \\ \widehat{\Pi}_{\ell, \Omega} A B &:= \text{sub} (\forall a \in \text{El}_{\ell} A, \text{isTrue} (B a)) \end{aligned}$$

where $\text{sub } P$ is defined as $\{x \in \{ \emptyset \} \mid P\}$, and $\text{isTrue } A$ is defined as $\emptyset \in A$. Given two levels ℓ and ℓ' (which may be either an integer n or Ω), one may easily see that if $A \in \mathbb{U}_{\ell}$ and $\forall a \in \text{El}_{\ell} A, B a \in \mathbb{U}_{\ell'}$, then we have $\widehat{\Pi}_{\ell, \ell'} A B \in \mathbb{U}_{\ell \vee \ell'}$. The definitions of λ -abstraction, application, and the proofs of β and η are straightforward and found in the formalization.

Remark that the label of $\widehat{\Pi}_{\ell, n} A B$ is defined as a tuple containing ℓ , n , A and the graph of B . This ensures that whenever two proof-relevant dependent products are equal, their levels, domains and codomains are equal, which is important for interpreting rules $\text{EQ-}\Pi_1$ and $\text{EQ-}\Pi_2$ of our theories.

Set-theoretic accessibility. (⌚/⌚) In order to define an accessibility predicate in set theory, we can simply reproduce the standard impredicative encoding of inductive propositions:

Definition $\text{acc} (A : \text{ZFset}) (R : \text{Rel } A) (a : \text{ZFset}) : \text{Prop} :=$
 $\forall X \in \mathcal{P} A, (\forall b \in A, (\forall c \in A, R c b \rightarrow c \in X) \rightarrow b \in X)$
 $\rightarrow a \in X$.

As a consequence of this definition, one can easily show that an element of A is accessible if and only if all of its predecessors under R are accessible. If we want to use this predicate to interpret type-theoretic accessibility, we also need an eliminator. For this purpose, assume that we have a set P , indexed over A , and that we have a set-theoretic function rec that outputs an element of $P a$ given an

$$\begin{aligned}
\llbracket \cdot \rrbracket &:= \{\emptyset\} \\
\llbracket \Gamma, x :^n A \rrbracket &:= \Sigma \llbracket \Gamma \rrbracket (y \mapsto \text{El}_n \llbracket \Gamma \vdash A \rrbracket_y) \\
\llbracket \Gamma, x :^\Omega A \rrbracket &:= \Sigma \llbracket \Gamma \rrbracket (y \mapsto \text{El}_\Omega \llbracket \Gamma \vdash A \rrbracket_y) \\
\llbracket \Gamma \vdash x \rrbracket_y &:= y(x) \\
\llbracket \Gamma \vdash \mathcal{U}_n \rrbracket_y &:= \mathbb{U}_n \\
\llbracket \Gamma \vdash \mathcal{U}_\Omega \rrbracket_y &:= \Omega \\
\llbracket \Gamma \vdash \Pi_{\ell, \ell'}(x : A, B) \rrbracket_y &:= \widehat{\Pi}_{\ell, \ell'} \llbracket \Gamma \vdash A \rrbracket_y (a \mapsto \llbracket \Gamma, A \vdash B \rrbracket_{y, a}) \\
\llbracket \Gamma \vdash \lambda_{\ell, n}^{x : A, B} x, t \rrbracket_y &:= (a \in \text{El}_\ell \llbracket \Gamma \vdash A \rrbracket_y) \mapsto (\llbracket \Gamma, A \vdash t \rrbracket_{y, a}) \\
\llbracket \Gamma \vdash t @_{\ell, n}^{x : A, B} u \rrbracket_y &:= \llbracket \Gamma \vdash t \rrbracket_y (\llbracket \Gamma \vdash u \rrbracket_y) \\
\llbracket \Gamma \vdash \mathbb{N} \rrbracket_y &:= \langle \omega ; 3 ; \emptyset \rangle \\
\llbracket \Gamma \vdash 0 \rrbracket_y &:= 0 \\
\llbracket \Gamma \vdash S(n) \rrbracket_y &:= 1 + \llbracket \Gamma \vdash n \rrbracket_y \\
\llbracket \Gamma \vdash \text{N-e1}^\ell(P, t_0, t_S, n) \rrbracket_y &:= \text{acc_e1} \llbracket \Gamma \vdash P \rrbracket_y \llbracket \Gamma \vdash t_0 \rrbracket_y \llbracket \Gamma \vdash t_S \rrbracket_y \\
\llbracket \Gamma \vdash \text{Eq}(A, t, u) \rrbracket_y &:= \text{sub} (\llbracket \Gamma \vdash t \rrbracket_y = \llbracket \Gamma \vdash u \rrbracket_y) \\
\llbracket \Gamma \vdash \text{cast}^n(A, B, e, t) \rrbracket_y &:= \llbracket \Gamma \vdash t \rrbracket_y \\
\llbracket \Gamma \vdash \text{Acc}^n(A, R, a) \rrbracket_y &:= \text{sub} (\text{acc} \llbracket \Gamma \vdash A \rrbracket_y \llbracket \Gamma \vdash R \rrbracket_y \llbracket \Gamma \vdash a \rrbracket_y) \\
\llbracket \Gamma \vdash \text{acc-e1}^n(A, R, a, P, p, q) \rrbracket_y &:= \text{acc_e1} \llbracket \Gamma \vdash A \rrbracket_y \llbracket \Gamma \vdash R \rrbracket_y \llbracket \Gamma \vdash a \rrbracket_y \llbracket \Gamma \vdash P \rrbracket_y \llbracket \Gamma \vdash q \rrbracket_y
\end{aligned}$$

Figure 3: Interpretation of contexts and proof-relevant terms

element of $P b$ for all b such that $R b a$. Then, we define E to be the smallest subset of $\Sigma A P$ closed under rec , and we use impredicative reasoning to show that E is the graph of a function. Finally, we use definite description to turn E into a higher-order function, and we have our set-theoretic eliminator acc_e1 . We conclude by proving its computational rule. Using the same methods, we can also construct an eliminator for the set of natural numbers ω (甫/甫).

Observational equality and cast. (甫) The propositional equality of our theory is interpreted as the set-theoretic equality by defining $\text{eq } A \vdash u := \text{sub} (t = u)$. This lets us interpret typecasting as the identity function, which satisfies all the required equations. Additionally, we obtain function extensionality from the extensional encoding of functions in set theory. This concludes the definition of our model.

Interpreting the syntax. Our higher-order model in hand, it remains to interpret the syntax of $\mathcal{T}_{\text{Acc}}^{\equiv}$ in it. The interpretation of raw syntax and typing judgments of a SOGAT into a higher-order model is a very administrative task, which has already been treated in very broad generality by Uemura [2021]. We therefore do not believe that formalizing it would provide new interesting insights, and so this part of the argument is only carried out on paper.

The interpretation is defined in Fig. 3 as partial functions from the syntax to the semantics. We use a function $\llbracket \cdot \rrbracket$ that interprets contexts as sets and a function $\llbracket \Gamma \vdash \cdot \rrbracket_y$ that interprets terms and types in context Γ as sets indexed by $y \in \llbracket \Gamma \rrbracket$. Both functions are mutually defined by recursion on the raw syntax, and will eventually be proven to be total functions on well-typed terms.

To prove soundness of our interpretation, we need to extend it to weakenings and substitutions between contexts. Assume Γ and Δ are a syntactical contexts, and A and t are syntactical terms. In case $\llbracket \Gamma, x : A : s, \Delta \rrbracket$ and $\llbracket \Gamma, \Delta \rrbracket$ are well-defined, let π_A be the projection:

$$\begin{aligned}
\pi_A : \llbracket \Gamma, x : A : s, \Delta \rrbracket &\rightarrow \llbracket \Gamma, \Delta \rrbracket \\
(\vec{x}_\Gamma, x_A, \vec{x}_\Delta) &\mapsto (\vec{x}_\Gamma, \vec{x}_\Delta).
\end{aligned}$$

In case $\llbracket \Gamma, \Delta[x := t] \rrbracket$ and $\llbracket \Gamma, x : A : s, \Delta \rrbracket$ are well-defined, we define the function σ_t by:

$$\begin{aligned}
\sigma_t : \llbracket \Gamma, \Delta[x := t] \rrbracket &\rightarrow \llbracket \Gamma, x : A : s, \Delta \rrbracket \\
(\vec{x}_\Gamma, \vec{x}_\Delta) &\mapsto (\vec{x}_\Gamma, \llbracket \Gamma \vdash t \rrbracket_{\vec{x}_\Gamma}, \vec{x}_\Delta).
\end{aligned}$$

LEMMA 5.1 (WEAKENING). π_A is the semantic counterpart to the weakening of A : for all terms u , when both sides are well defined, we have $\llbracket \Gamma, x : A : s, \Delta \vdash u \rrbracket_y = \llbracket \Gamma, \Delta \vdash u \rrbracket_{\pi_A(y)}$

LEMMA 5.2 (SUBSTITUTION). σ_t is the semantic counterpart to the substitution by t : for all terms u , when both sides are well defined, we have $\llbracket \Gamma, \Delta[x := t] \vdash u[x := t] \rrbracket_y = \llbracket \Gamma, x : A : s, \Delta \vdash u \rrbracket_{\sigma_t(y)}$

As a last step before proving soundness of the model, we must ensure that the axioms of Σ indeed hold in set theory. Formally, we assume that $\llbracket \vdash A \rrbracket$ is defined and inhabited for all $c : A \in \Sigma$, an hypothesis satisfied by many important axioms, such as function extensionality, excluded middle and various forms of choice.

THEOREM 5.3 (SOUNDNESS OF THE STANDARD MODEL).

- (1) If $\vdash \Gamma$ then $\llbracket \Gamma \rrbracket$ is defined.
- (2) If $\Gamma \vdash A : \mathcal{U}_\Omega$ then $\llbracket \Gamma \vdash A \rrbracket_y \in \text{El}_0 \Omega$ for all $y \in \llbracket \Gamma \rrbracket$.
- (3) If $\Gamma \vdash A : \mathcal{U}_n$ then $\llbracket \Gamma \vdash A \rrbracket_y \in \text{El}_{n+1} \mathbb{U}_n$ for all $y \in \llbracket \Gamma \rrbracket$.
- (4) If $\Gamma \vdash^\Omega t : A$ then $\emptyset \in \text{El}_\Omega \llbracket \Gamma \vdash A \rrbracket_y$ for all $y \in \llbracket \Gamma \rrbracket$.
- (5) If $\Gamma \vdash^n t : A$ then $\llbracket \Gamma \vdash t \rrbracket_y \in \text{El}_n (\llbracket \Gamma \vdash A \rrbracket_y)$ for all $y \in \llbracket \Gamma \rrbracket$.
- (6) If $\Gamma \vdash t \equiv u : A$ then $\llbracket \Gamma \vdash t \rrbracket_y = \llbracket \Gamma \vdash u \rrbracket_y$ for all $y \in \llbracket \Gamma \rrbracket$.

PROOF. By induction on the typing derivations, using Lemmas 5.1 and 5.2. \square

Consequences. As the false proposition is interpreted as the empty set, we get that our theories are consistent.

THEOREM 5.4 (CONSISTENCY). The type \perp , defined as $\Pi(X : \mathcal{U}_\Omega). X$, is not inhabited in $\mathcal{T}_{\text{Acc}}^{\equiv}$ or $\mathcal{T}_{\text{Acc}}^{\neq}$ in the empty context.

We now focus on proving the assumptions needed for the canonicity proof. Since we equipped every relevant type former with a unique identifier, we get that one cannot prove an equality between two relevant types with different heads in the empty context (**Assumption A**).

To prove **Assumption B**, we need the following easy lemma. Recall that a *relation morphism* from R_1 to R_2 is a function ϕ such that $R_1(x, y)$ implies $R_2(\phi(x), \phi(y))$.

LEMMA 5.5 (MORPHISMS REFLECT ACCESSIBILITY). If ϕ is a relation morphism from R_1 to R_2 and $\phi(a)$ is well founded for R_2 then a is well founded for R_1 .

Now, assuming $e : \text{Acc}^n(A, xy.R, a)$, Theorem 5.3 yields a proof of $\llbracket \text{Acc}^n(A, xy.R, a) \rrbracket$, meaning that the element $\llbracket a \rrbracket$ is well founded for the binary relation $\llbracket R \rrbracket$ over $\llbracket A \rrbracket$. Theorem 5.3 implies also that $\llbracket - \rrbracket$ is a relation morphism from \widetilde{R} to $\llbracket R \rrbracket$, thus we conclude that a is well founded for \widetilde{R} (**Assumption B**).

6 Accessibility in SProp in Action

We base our implementation on the work of Pujet et al. [2025], which implements CIC_{obs} using the rewrite rule mechanism introduced in Rocq [Cockx et al. 2021; Leray et al. 2024]. This makes

it possible to postulate the cast operation (where \sim is the notation for observational equality) together with its reduction rules implementing the conversion rules such as **CAST-II** (not shown):

Symbol `cast` : $\forall (A B : \text{Type}), A \sim B \rightarrow A \rightarrow B$.

Defining Acc in SProp. The accessibility predicate can be defined in Rocq as the following inductive predicate in **SProp**:

```
Inductive Acc A (R: A → A → SProp) (x:A) : SProp :=
| acc_in : ( $\forall y : A, R y x \rightarrow \text{Acc } A R y$ ) → Acc A R x.
```

However, only the eliminator for predicates in **SProp** is generated by default, so we postulate a new symbol `acc_el` (*i.e.*, a new constant) corresponding to rule **ACC-EL**:

```
Symbol acc_el :  $\forall A R a (P : \forall x : A, \text{Type}),$ 
 $(\forall a, (\forall b : A, R b a \rightarrow P b) \rightarrow P a) \rightarrow$ 
 $\forall (q : \text{Acc } R a), P a$ .
```

Supporting $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$. It remains to implement the two computation rules for `acc_el`, the propositional one and the definitional one for $\mathcal{T}_{\text{Acc}}^{\equiv}$. The propositional is simply stated as an axiom:

```
Axiom Acc_el_comp :  $\forall A R a P p q,$ 
acc_el A R a P p q ~
p a (fun b r => acc_el A R b P p (acc_inv A R a q b r)).
```

For the other, we define a rewrite rule corresponding to an oriented version of **Acc-el-def** ('?' is used to introduce patterns, corresponding to variables bound by the left-hand side of the rewrite rule):

```
#[local] Rewrite Rule Acc_el_def :=
| acc_el ?A ?R ?a ?P ?p ?q =>
?p ?a (fun b r =>
acc_el ?A ?R b ?P ?p (acc_inv ?A ?R ?a ?q b r)).
```

The term `acc_inv` used above corresponds to rule **Acc-INV**.

Note that we have introduced in Rocq (in a modified v9.2) a way to localize the use of a rewrite rule, using the pragma `#[local]`. This flag specifies that the rewrite rule is disabled by default, and must be explicitly enabled *locally* with the `#[rewrite_rules(Acc_el_def)]` pragma when one wants to work in the theory $\mathcal{T}_{\text{Acc}}^{\equiv}$.

Well-founded recursion done right—and fast. To test our hypothesis that having a definitional computation rule for `acc_el` is crucial in some cases, we define the gcd (greatest common divisor) function, following the running example of [Leroy \[2024\]](#).

We do not recall the concrete implementation of gcd, which can be found in the Rocq formalization. Here, what matters is the ability to prove simple helpful lemmas such as:

Lemma gcd_test : $(\text{gcd } (2 ^ N) 2 <? 5) \sim \text{true}$.

for some given number N . Indeed, when doing proofs in computational algebra for instance, it is not rare to have to prove concrete bounds on functions applied to specific values in order to be able to apply a lemma. This is the case for instance when approximating definite integrals, as explained by [Mahboubi et al. \[2019\]](#).

We test the performance of the proofs in three different scenarios, when N varies:

- (1) by evaluating the normalization proof of gcd in **Prop** as it can be done in standard CIC,

N	Proof normalization in Prop	Rewriting in $\mathcal{T}_{\text{Acc}}^=$	Conversion in $\mathcal{T}_{\text{Acc}}^{\equiv}$
5	< 0.001 sec	0.085 sec	< 0.001 sec
6	< 0.001 sec	0.38 sec	< 0.001 sec
7	< 0.001 sec	2.638 sec	< 0.001 sec
8	0.001 sec	21.468 sec	0.001 sec
9	0.002 sec	203.198 sec	0.002 sec
10	0.004 sec	X	0.004 sec

Table 1: Performance comparison of three approaches to prove the lemma gcd_test for some values of N. (X indicates a 10-min timeout)

- (2) by (automated) rewriting with the propositional equality `Acc_el_prop` in $\mathcal{T}_{\text{Acc}}^=$, similar to using the `simp` tactic in LEAN,
- (3) by evaluating `acc_el` directly in $\mathcal{T}_{\text{Acc}}^{\equiv}$.

Working directly in $\mathcal{T}_{\text{Acc}}^{\equiv}$, the proof is performed as:

```
Lemma gcd_test : ( $\text{gcd } (2 ^ N) 2 <? 5) \sim \text{true}$ .
```

Proof.

```
auto_Acc_unfold; reflexivity.
```

Qed.

The tactic `auto_Acc_unfold` performs rewrites with the propositional equality `Acc_el_prop` until it is no longer applicable.

Using the conservativity result (Theorem 4.3), the proof can be performed by locally moving to $\mathcal{T}_{\text{Acc}}^{\equiv}$, and exploit conversion:

```
#[rewrite_rules(Acc_el_def)]
Lemma gcd_test_def ( $\text{gcd } (2 ^ N) 2 <? 5) \sim \text{true}$ .
Proof.
reflexivity.
Qed.
```

The results shown in Table 1 illustrate the performance benefits of being able to compute with `acc_el` in **SProp** or **Prop**. The results were obtained on a MacBook Pro 14-in (M2 Pro, 32GB RAM), taking the average of 10 runs.

The most salient result of this small experiment is that automatic rewriting with the `Acc_el_prop` lemma in $\mathcal{T}_{\text{Acc}}^=$ performs poorly compared to the other two approaches, and degrades very quickly—reaching a 10-min timeout for $N = 10$. Note that for a given N , $2^{N-1} + 1$ rewrites are performed. The fact that computation time grows much faster than the number of rewritings to perform is due to the exponential growth in the size of the generated proof terms. The drastic performance difference between automatic rewriting in $\mathcal{T}_{\text{Acc}}^=$ and relying on conversion in $\mathcal{T}_{\text{Acc}}^{\equiv}$ comes from the fact that, with conversion, the proof is always just `refl`, independently of the number of reduction steps to be performed.

The apparent efficiency of evaluating the termination proof in **Prop**—which here is comparable to direct computation in **SProp**—is in fact misleading, as it depends on the size of the proof of accessibility passed on to the eliminator. Indeed, recall that the computation rule for accessibility in **Prop** requires the proof term to be first reduced to `acc_in`. For gcd this proof is rather small but, as we show next with a System F evaluator, this approach does not scale at all when the termination argument is larger and more intricate.

Perils of reduction. We now explain what happens when trying to prove the above lemma generically for all n , highlighting the

interest of considering both $\mathcal{T}_{\text{Acc}}^=$ and $\mathcal{T}_{\text{Acc}}^{\equiv}$ in concert. When working inside $\mathcal{T}_{\text{Acc}}^{\equiv}$, fully evaluating the gcd (using the `lazy` tactic) does not terminate; indeed, the canonicity theorem (Corollary 3.10) only holds on closed terms, and thus does not apply when n is a variable.

```
#[rewrite_rules(Acc_el_def)]
Lemma gcd_test_gen : ∀ n, (gcd (2 ^ n) 2 <? 5) ~ true.
Proof.
  Fail Timeout 2 lazy; reflexivity.
Abort.
```

Note that non-termination can be avoided by only reducing to weak head normal form with tactics such as `simpl` or `hnf`. But controlling reduction is fragile in proof assistants. As mentioned in §1, this is the reason why in LEAN, when `acc_el` is set to compute, subtle changes in heuristics to control unfolding can unexpectedly break proofs. In that case, the better approach is to show this property in $\mathcal{T}_{\text{Acc}}^=$, using rewriting during reasoning.

Normalization of System F. To illustrate the practical benefits of the proposed approach to reconcile definitional proof irrelevance and accessibility in presence of *impredicativity*, we now consider the stereotypical case of an evaluator of System F. We first explain how the evaluator can be obtained from the proof of normalization of System F, and then quickly report on the performance comparison of different approaches to compute with this evaluator.

Note that compared to the gcd example above, the semantic termination argument of System F is rather involved. Also, an evaluator for System F cannot be defined in CIC_{obs} without accessibility defined in `SProp`, as normalization of System F fundamentally relies on impredicativity and the presence of an accessibility predicate.

For a term t of System F, being normalizing is encoded by the fact that anti-reduction is accessible at t :

```
Definition Normalizing (t : Term) : SProp :=
  Acc (fun t' t => t ~~ t') t.
```

where $t ~~ t'$ denotes that t β -reduces to t' in exactly one step. Put differently, all β -reduction chains starting from t are finite.

The main part of the proof from Reynolds and [Girard \[1972\]](#), using reducibility candidates, is to show that any well-typed term of System F is actually normalizing.

```
Lemma termf_norm : ∀ ctx t ty,
  ctx ⊢ t :: ty → Normalizing t.
```

To prove this result in Rocq, in `SProp`, we adapted the development of [Blot \[2022\]](#), which was carried out in `Prop`. From this proof of normalization, it is possible to derive an evaluator `nf` for System F by first showing that being in normal form is a decidable property.

```
Definition nf : ∀ ctx t ty, ctx ⊢ t :: ty → Term.
```

Having derived the evaluator from the normalization proof, we look again at the three different approaches to compute with it, via the simple example of proving $2^{n+1} = 2^n + 2^n$ with concrete values of n . Recall that in System F, the type of Church numerals can be defined as $\forall X, X \rightarrow (X \rightarrow X) \rightarrow X$, thanks to impredicativity, therefore requiring the use of an impredicative universe.

The results are given in Table 2. They confirm that using automatic rewrite of the propositional computation rule is slow and does not scale. Notably, while the proof normalization in `Prop` appeared reasonable in the gcd example, here we see the impact of

n	Proof normalization in <code>Prop</code>	Rewriting in $\mathcal{T}_{\text{Acc}}^=$	Computation in $\mathcal{T}_{\text{Acc}}^{\equiv}$
2	38 sec	12.2 sec	0.002 sec
3	✗	35.4 sec	0.005 sec
4	✗	147 sec	0.015 sec
9	✗	✗	14.3 sec

Table 2: Performance comparison of three approaches to prove $2^{n+1} = 2^n + 2^n$ for some values of n , with the System F evaluator. (✗ indicates a 30-min timeout)

an involved termination argument: with $n = 2$ the approach is already 3x slower than rewriting in $\mathcal{T}_{\text{Acc}}^=$, and reaches a 30-min timeout with just $n = 3$. On the contrary, direct computation in $\mathcal{T}_{\text{Acc}}^{\equiv}$ performs orders of magnitude better, and scales adequately, achieving practical performance even for $n = 9$ and beyond.

7 Conclusion, Related and Future Work

We have presented a dual approach to reconciling definitional proof irrelevance with accessibility predicates, with an ambient decidable theory $\mathcal{T}_{\text{Acc}}^=$ that only features a propositional computation rule for accessibility elimination, and a more flexible theory $\mathcal{T}_{\text{Acc}}^{\equiv}$ that supports a definitional computation rule at the expense of potential divergence. Crucially, we prove the theory $\mathcal{T}_{\text{Acc}}^{\equiv}$ to be conservative over $\mathcal{T}_{\text{Acc}}^=$, ensuring that it can be used to simplify the writing of proofs in the latter. The two theories are consistent and satisfy canonicity properties. We have briefly discussed and illustrated an implementation in the Rocq prover, based on local rewrite rules.

We have already discussed the most salient related work that gives rise to this work in the introduction (§1), in particular the tension between definitional proof irrelevance and accessibility [[Gilbert et al. 2019](#)]. The study of general recursion in constructive type theory via well-founded relations dates back to [Paulson \[1986\]](#), with the introduction of the accessibility predicate technique later by [Bove and Capretta \[2005\]](#), which is nowadays the standard approach for well-founded definitions in type theory-based proof assistants.

The metatheory of definitional proof irrelevance was studied in the setting of intentional Martin-Löf Type Theory initially by [Werner \[2008\]](#), even if this principle was already used as justification for other systems [[Altenkirch 1999b; Barthe 1998](#)]. However, the work of Werner mentions a wrong conjecture on the behavior of propositional equality in this context, which has recently been clarified by [Abel and Coquand \[2020\]](#). This illustrates the difficulty of mixing definitional proof irrelevance with logical principles on the metatheoretic level. Further metatheoretic study of definitional proof irrelevance came later with the work of [Abel et al. \[2011\]](#), [Gilbert et al. \[2019\]](#) and [Coquand \[2023\]](#). [Pujet and Tabareau \[2022\]](#) subsequently extended the work of [Gilbert et al. \[2019\]](#) by also considering observational equality, originally proposed by [Altenkirch et al. \[2007\]](#). Their work was extended to account for impredicativity [[Pujet and Tabareau 2023](#)] and indexed inductive types [[Pujet et al. 2025](#)].

Finally, the work on extraction of [Letouzey \[2004\]](#), recently formalized by [Forster et al. \[2024\]](#), can be seen as an external version of our approach. Indeed, after the erasure of proofs, the eliminator for accessibility computes exactly as specified by rule `ACC-EL-DEF`, ignoring the accessibility witness. However, our canonicity result is

stronger as it also holds in presence of consistent axioms in *SProp*, in particular the use of classical principles. One promising line of work is to study whether our proof technique can be used to derive a similar result for extraction, therefore drawing a line of which kind of axioms can be used safely in a formalization while ensuring the good computational properties of the extracted code.

References

Andreas Abel and Thierry Coquand. 2020. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality. *Logical Methods in Computer Science* Volume 16, Issue 2 (June 2020). [doi:10.23638/LMCS-16\(2:14\)2020](https://doi.org/10.23638/LMCS-16(2:14)2020)

Andreas Abel, Thierry Coquand, and Miguel Pagano. 2011. A modular type-checking algorithm for type theory with singleton types and proof irrelevance. *Logical Methods in Computer Science* 7 (2011).

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type Theory. *Proceedings of the ACM on Programming Languages* 2, POPL, Article 23 (Jan. 2018), 29 pages. [doi:10.1145/3158111](https://doi.org/10.1145/3158111)

Arthur Adjeid, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and Loïc Pujet. 2024. Martin-Löf à la Coq. In *Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2024, London, UK, January 15–16, 2024*, Amin Timany, Dmitriy Traytel, Brigitte Pientka, and Sandrine Blazy (Eds.). ACM, 230–245. [doi:10.1145/3636501.3636951](https://doi.org/10.1145/3636501.3636951)

Thorsten Altenkirch. 1999a. Extensional Equality in Intensional Type Theory. In *Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS '99)*. IEEE Computer Society, USA, 412.

T. Altenkirch. 1999b. Extensional equality in intensional type theory. In *Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)*. 412–420. [doi:10.1109/LICS.1999.782636](https://doi.org/10.1109/LICS.1999.782636)

Thorsten Altenkirch and Ambrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In *Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In *Proceedings of the Workshop on Programming Languages meets Program Verification (PLPV 2007)*. 57–68. [doi:10.1145/1292597.1292608](https://doi.org/10.1145/1292597.1292608)

Jeremy Avigad, Leonardo de Moura, Soonho Kong, Sebastian Ullrich, and with contributions from the Lean Community. 2025. Theorem Proving in Lean 4. https://lean-lang.org/theorem_proving_in_lean4/

Gilles Barthe. 1998. The relevance of proof-irrelevance. In *Automata, Languages and Programming*, Kim G. Larsen, Sven Skyum, and Glynn Winskel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 755–768.

Valentin Blot. 2022. Normalization of System F, formalized in Coq. (2022). <https://gitlab.inria.fr/-/snippets/797>.

Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in type theory. *Mathematical Structures in Computer Science* 15, 4 (Aug. 2005), 671–708. [doi:10.1017/S0960129505004822](https://doi.org/10.1017/S0960129505004822)

Guillaume Brunerie, Menno de Boer, Peter LeFanu Lumsdaine, and Anders Mörtberg. 2019. A formalization of the initiality conjecture in Agda. *Slides from a talk about joint work with Menno de Boer, Peter Lumsdaine, and Anders Mörtberg, at HoTTEST, Pittsburgh, CMU* (2019).

Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. 2021. The Taming of the Rew: A Type Theory with Computational Assumptions. *Proc. ACM Program. Lang.* 5, POPL, Article 60 (Jan. 2021), 29 pages. [doi:10.1145/3434341](https://doi.org/10.1145/3434341)

Thierry Coquand. 2023. Reduction Free Normalisation for a proof irrelevant type of propositions. *Logical Methods in Computer Science* Volume 19, Issue 3, Article 5 (Jul 2023). [doi:10.46298/lmcs-19\(3:5\)2023](https://doi.org/10.46298/lmcs-19(3:5)2023)

Thiago Felicissimo. 2025. Generic Bidirectional Typing for Dependent Type Theories. *ACM Trans. Program. Lang. Syst.* 47, 1, Article 2 (April 2025), 42 pages. [doi:10.1145/3715095](https://doi.org/10.1145/3715095)

Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. 2024. Verified Extraction from Coq to OCaml. *Proc. ACM Program. Lang.* 8, PLDI, Article 149 (jun 2024), 24 pages. [doi:10.1145/3656379](https://doi.org/10.1145/3656379)

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance without K. *Proceedings of the ACM on Programming Languages* 3 (Jan. 2019), 1–28. [doi:10.1145/3290316](https://doi.org/10.1145/3290316)

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur. (1972). Thèse de Doctorat d’État, Université de Paris VII.

Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Implementing a modal dependent type theory. *Proc. ACM Program. Lang.* 3, ICFP, Article 107 (July 2019), 29 pages. [doi:10.1145/3341711](https://doi.org/10.1145/3341711)

Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A framework for defining logics. *J. ACM* 40, 1 (Jan. 1993), 143–184. [doi:10.1145/138027.138060](https://doi.org/10.1145/138027.138060)

Martin Hofmann. 1995. Conservativity of equality reflection over intensional type theory. In *International Workshop on Types for Proofs and Programs*. Springer, 153–164.

Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka. 2025. McTT: A Verified Kernel for a Proof Assistant. *Proc. ACM Program. Lang.* 9, ICFP, Article 242 (Aug. 2025), 32 pages. [doi:10.1145/3747511](https://doi.org/10.1145/3747511)

Ambrus Kaposi and Szumi Xie. 2024. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In *9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 299)*, Jakob Rehof (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 10:1–10:24. [doi:10.4230/LIPIcs.FSCD.2024.10](https://doi.org/10.4230/LIPIcs.FSCD.2024.10)

Gyesik Lee and Benjamin Werner. 2011. Proof-irrelevant model of CC with predicative induction and judgmental equality. *Logical Methods in Computer Science* Volume 7, Issue 4, Article 5 (Nov 2011). [doi:10.2168/LMCS-7\(4:5\)2011](https://doi.org/10.2168/LMCS-7(4:5)2011)

Meven Lennon-Bertrand. 2021. Complete Bidirectional Typing for the Calculus of Inductive Constructions. In *12th International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 193)*, Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. [doi:10.4230/LIPIcs.ITP.2021.24](https://doi.org/10.4230/LIPIcs.ITP.2021.24)

Yann Leray, Gaëtan Gilbert, Nicolas Tabareau, and Théo Winterhalter. 2024. The Rewster: Type Preserving Rewrite Rules for the Coq Proof Assistant. In *International Conference on Interactive Theorem Proving (ITP 2024)*, Vol. 15th International Conference on Interactive Theorem Proving (ITP 2024). Yves Bertot and Temur Kutsia and Michael Norrish, Tbilisi, Georgia, 18. [doi:10.4230/LIPIcs.ITP.2024.26](https://doi.org/10.4230/LIPIcs.ITP.2024.26)

Xavier Leroy. 2024. Well-founded recursion done right. In *CoqPL 2024: The Tenth International Workshop on Coq for Programming Languages*. ACM, London, United Kingdom. <https://inria.hal.science/hal-04356563>

P. Letouzey. 2004. *Programmation fonctionnelle certifiée – L’extraction de programmes dans l’assistant Coq*. Ph.D. Dissertation, Université Paris-Sud.

Assia Mahboubi, Guillaume Melquiond, and Thomas Sibut-Pinote. 2019. Formally Verified Approximations of Definite Integrals. *Journal of Automated Reasoning* 62, 2 (Feb. 2019), 281–300. [doi:10.1007/s10817-018-9463-7](https://doi.org/10.1007/s10817-018-9463-7)

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In *Logic Colloquium '73*, H.E. Rose and J.C. Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73 – 118. [doi:10.1016/S0049-237X\(08\)71945-1](https://doi.org/10.1016/S0049-237X(08)71945-1)

Steven Obua. 2006. Partizan Games in Isabelle/HOLZF. In *Theoretical Aspects of Computing - ICTAC 2006*, Kamel Barkaoui, Ana Cavalcanti, and Antonio Ceroni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 272–286.

Nicolas Oury. 2005. Extensionality in the Calculus of Constructions. In *International Conference on Theorem Proving in Higher Order Logics*. Springer, 278–293.

Christine Paulin-Mohring. 2015. Introduction to the Calculus of Inductive Constructions. In *All about Proofs, Proofs for All*, Bruno Woltzenlogel Paleo and David Delahaye (Eds.). Studies in Logic (Mathematical logic and foundations), Vol. 55. College Publications. <https://hal.inria.fr/hal-01094195>

Lawrence C. Paulson. 1986. Constructing Recursion Operators in Intuitionistic Type Theory. 2 (1986), 325–355.

Pierre-Marie Pédrot. 2020. Russian Constructivism in a Prefascist Theory. In *Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS '20)*. Association for Computing Machinery, New York, NY, USA, 782–794. [doi:10.1145/3373718.3394740](https://doi.org/10.1145/3373718.3394740)

Loïc Pujet, Yann Leray, and Nicolas Tabareau. 2025. Observational Equality Meets CIC. *ACM Transactions on Programming Languages and Systems (TOPLAS)* 47, 2 (April 2025), 1–35. [doi:10.1145/3719342](https://doi.org/10.1145/3719342)

Loïc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now For Good. *Proceedings of the ACM on Programming Languages* 6, POPL (Jan. 2022), 1–29. [doi:10.1145/3498693](https://doi.org/10.1145/3498693)

Loïc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. *Proceedings of the ACM on Programming Languages* 7, POPL (Jan. 2023), 74. [doi:10.1145/3571739](https://doi.org/10.1145/3571739)

Amin Timany and Matthieu Sozeau. 2017. *Consistency of the Predicative Calculus of Cumulative Inductive Constructions (pCIC)*. Research Report RR-9105. KU Leuven, Belgium ; Inria Paris. 32 pages. <https://inria.hal.science/hal-01615123> Version 2 fixes some typos from version 1. Version 3 fixes a typo in a typing rule from version 2.

Taichi Uemura. 2021. *Abstract and concrete type theories*. Ph.D. Dissertation. University of Amsterdam.

Benjamin Werner. 2008. On the Strength of Proof-Irrelevant Type Theories. 4 (09 2008), 1–20.

Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019. Eliminating reflection from type theory. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019)*. Association for Computing Machinery, New York, NY, USA, 91–103. [doi:10.1145/3293880.3294095](https://doi.org/10.1145/3293880.3294095)