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Abstract
A universe of propositions equipped with definitional proof irrele-
vance constitutes a convenient medium to express properties and
proofs in type-theoretic proof assistants such as Lean, Rocq, and
Agda. However, allowing accessibility predicates—used to estab-
lish semantic termination arguments—to inhabit such a universe
yields undecidable typechecking, hampering the predictability and
foundational bases of a proof assistant. To effectively reconcile def-
initional proof irrelevance and accessibility predicates with both
theoretical foundations and practicality in mind, we describe a type
theory that extends the Calculus of Inductive Constructions fea-
turing observational equality in a universe of strict propositions,
with two variants for handling the elimination principle of acces-
sibility predicates: one variant safeguards decidability by sticking
to propositional unfolding, and the other variant favors flexibility
with definitional unfolding, at the expense of a potentially diverg-
ing typechecking procedure. Crucially, the metatheory of this dual
approach establishes that any proof made in the definitional variant
of the theory can be translated into a proof of the same statement
in the propositional variant, all while preserving the decidability
of the latter. Moreover, we prove the two variants to be consis-
tent and to satisfy forms of canonicity, ensuring that programs can
indeed be properly evaluated. We present an implementation in
Rocq and compare it with existing approaches. Overall, this work
introduces an effective technique that informs the design of proof
assistants with strict propositions, enabling local computation with
accessibility predicates without compromising the ambient type
theory.
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1 Introduction
Proof assistants based on dependent type theory such as Rocq
(formerly known as Coq), Lean, and Agda embody the Curry-
Howard correspondence, in which propositions are represented as
types and proofs as well-typed terms.

Propositions and proof irrelevance. Although the Curry-Howard
philosophy suggests that propositions should be considered as
regular types just like N or B, in practice it is useful to enforce a
clear distinction between relevant data and irrelevant proofs.

For instance, the proof assistant Rocq features a special universe
for propositions called Prop. All the types in Prop are compatible
with propositional proof irrelevance, a principle which states that
any two proofs of the same statement are propositionally equal. In
contrast, this principle is clearly invalid for most datatypes (which
are thus put in the Type hierarchy): consider for instance the type
of natural numbers N, for which one can show that 0 ≠ 1.

In order to be compatible with proof irrelevance, onemust ensure
that irrelevant proof terms cannot be used to produce computa-
tionally relevant content in a way that would enable distinguishing
two proofs of the same statement. This property is also key for
having an extraction mechanism, which strips terms of all proposi-
tional content in order to compile them to common programming
languages [Letouzey 2004].

In the Calculus of Inductive Constructions [Paulin-Mohring
2015]—the underlying theory of Rocq—this is enforced by a syn-
tactic condition known as the subsingleton criterion:1 eliminating
a term of an inductive type in Prop to produce a term whose type
is in Type is allowed only if the input inductive type has at most
one constructor whose non-parameter arguments’ types are also in
Prop. This controlled Prop-to-Type elimination applies in particular
to three fundamental inductive types, each corresponding to highly
relevant application scenarios in theorem proving:

(a) the empty type False, used to discard impossible branches
in pattern matching;

(b) the identity type Eq, used to rewrite provably equal terms;
(c) the accessibility predicate Acc, allowing the definition of re-

cursive functions (a.k.a. fixpoints) via semantic termination
arguments, such as an evaluator for System F terms.

1This criterion was introduced in Coq 7.3 in 2002.
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Strict propositions. Unfortunately, the compatibility of Prop with
propositional proof irrelevance is often insufficient in practice: the
user is still required to perform explicit rewrites when relating
terms up to proofs. As a consequence, working for instance with
with subset types becomes more unpleasant, even though they are
omnipresent in both mathematical and programming developments.
Worse, as soon as the user postulates proof irrelevance—or almost
any axiom, for that matter—they break the property of canonicity,
i.e., that any term of type N computes to a numeral.

To address the aforementioned problems, type-theoretic proof
assistants have increasingly added support for strict propositions,
for which proof irrelevance is not propositional but definitional—
allowing, for instance, terms of a subset type be convertible as soon
as their data components are convertible. Strict propositions were
first introduced in Lean, before being integrated in Agda and in
Rocq [Gilbert et al. 2019]. Here, we adopt the convention of Rocq
and write the universe of strict propositions as SProp, to distinguish
it from Prop. Apart from yielding a setting closer to informal math-
ematical practice, strict propositions are also necessary for many
important constructions in type theory, such as the setoid model of
Altenkirch [1999a] and the strict presheafs of Pédrot [2020].

Crucially, the addition of SProp was shown to preserve all im-
portant metatheoretical properties of type theory, in particular
canonicity. Moreover, in stark contrast with Prop axioms, which
block computation, canonicity holds even in the presence of con-
sistent SProp axioms, such as function extensionality—which states
that two functions are equal whenever they are pointwise equal.

Failure of the subsingleton criterion. Themove from Prop to SProp
however jeopardizes the good properties of the subsingleton cri-
terion for controlling elimination into Type. Naively extending it
to inductive types in SProp only works safely for False. For Eq,
the proof-irrelevant version of the traditional 𝐽 eliminator with its
stronger reduction rule, as implemented in Lean, breaks canonic-
ity in the presence of function extensionality [Avigad et al. 2025,
Sec 12.3] and proof normalization in the presence of impredica-
tivity [Abel and Coquand 2020]. Worse, elimination of Acc breaks
decidability of conversion regardless of function extensionality or
(im)predicativity [Gilbert et al. 2019].

For these reasons, Rocq and Agda use a weakened version of the
subsingleton criterion for SProp, which only allows the elimination
of False. This restriction limits the applicability of SProp, so in
practice Rocq users still resort to the legacy Prop universe to exploit
equality rewriting and accessibility predicates for fixpoints, while
Agda users have to carry out their development in Type.

On the other hand, Lean has originally supported the full subs-
ingleton criterion for SProp. This has not only further hindered its
computational properties—which were already jeopardized by the
adoption of Hilbert’s global choice—but also forced users to deal
with undecidable type checking. Lean adopts a heartbeat mecha-
nism that introduces a user-customizable bound on typechecking
computation steps. While this effectively avoids infinite loops, the
implementation of definitional equality becomes different from its
specification and unpredictable—e.g., it is no longer transitive—and
subtle changes in heuristics to control unfolding can unexpectedly

break proofs.2 In particular, until recently, using inconsistent ax-
ioms in Lean could make evaluation loop. Since v4.9 (2024) Lean
has rolled back on computing with accessibility predicates, falling
back to propositional rewriting. Because users can change this be-
havior via flags, it is unclear what metatheoretical properties are
satisfied by this design.

Observational Equality. Given this less-than-ideal state of affairs,
one can wonder if definitional proof irrelevance is doomed to lack
well-behaved elimination into Type, or if it can be made to work
with Eq andAcc all while preserving the good properties of type the-
ory. Thankfully, Pujet et al. [2025]; Pujet and Tabareau [2022, 2023]
realized that the issue with equality could be addressed by focus-
ing on the alternative notion of observational equality [Altenkirch
et al. 2007]. Unlike the inductive identity type of Martin-Löf [1975],
whose elimination principle 𝐽 works uniformly for all predicates in
Type, the elimination of observational equality is defined in a type-
directed manner via a cast operator. This approach is expressive
enough to emulate the traditional 𝐽 eliminator, and allows elimina-
tion of an SProp-valued equality into Type without compromising
on decidability, canonicity or consistency. The theory CICobs ex-
tends CIC with observational equality, and will be available in a
future release of Rocq. Thus, the only part of the subsingleton crite-
rion that remains unavailable in SProp is the accessibility predicate.

Contributions. The goal of this work is to achieve a graceful mar-
riage of accessibility and definitional proof irrelevance. Of course,
we cannot avoid the undecidability result of Gilbert et al. [2019]:
if one allows the unfolding of fixpoints whose accessibility proof
starts with a constructor, then proof irrelevance will entail that ev-
ery accessibility proof may as well start with a constructor, and thus
that every fixpoint can be unfolded. If the well-foundedness used
for a particular given fixpoint turns out to be unsound—e.g., by re-
lying on an inconsistent assumption—then the automatic unfolding
of this fixpoint will blindly diverge.

Therefore, we propose to avoid the problems related to unde-
cidability by first considering an extension of CICobs, henceforth
named 𝒯 =

Acc, in which the computation rule for Acc, which speci-
fies how the eliminator interacts with the constructor, only holds
propositionally. Restricting elimination of accessibility to a propo-
sitional computation rule straightforwardly recovers decidability
of conversion, but it also breaks the usual statement of canonic-
ity, given that any function defined using accessibility only enjoys
propositional unfolding. This can make reasoning about recursive
functions defined via accessibility much less natural: for instance,
given such a function 𝑓 : N → N, proving that 𝑓 𝑘 = 𝑚 for 𝑘,𝑚
concrete natural numbers requires us to perform explicit rewrites
(possibly a lot) to compensate for the lack of computation.

Our first technical contribution addresses this difficulty by in-
troducing a second theory 𝒯 ≡

Acc in which the computation rule for
accessibility holds definitionally. As expected, conversion is unde-
cidable in 𝒯 ≡

Acc, but in exchange for this we will show that it does
satisfy canonicity, and thus that it provides a good setting to evalu-
ate programs from 𝒯 =

Acc. For instance, if we embed the function 𝑓

from the previous example in 𝒯 ≡
Acc, 𝑓 𝑘 now evaluates to𝑚, and we

2See, for example, a Zulip discussion about opaque recursion definitions breaking the
mergeSort decidability proof.
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can show that 𝑓 𝑘 =𝑚 by reflexivity. However, this simpler proof
is made in the theory 𝒯 ≡

Acc, not in 𝒯 =
Acc, raising the question of how

to connect this proof to one in the theory 𝒯 =
Acc.

Our second major contribution is showing that the definitional
theory 𝒯 ≡

Acc is conservative over the propositional theory 𝒯 =
Acc, by

adaptingWinterhalter et al. [2019]’s translation from extensional to
intentional type theory, coming from the seminal work of Hofmann
[1995]; Oury [2005]. Concretely, this implies that, when proving
a proposition 𝑃 : SProp in 𝒯 =

Acc (such as 𝑓 𝑘 =𝑚), one can locally
switch to the theory 𝒯 ≡

Acc to complete the proof, with the guarantee
that the proof term in 𝒯 ≡

Acc could in principle be elaborated to
a proof term in 𝒯 =

Acc. Yet, because proofs of strict propositions
are computationally irrelevant, this proof term translation never
needs to be performed in practice, and one can instead just add
𝑃 in 𝒯 =

Acc as a (justified) axiom. This crucial remark allows us to
avoid computing the explicit witness for 𝑃 in 𝒯 =

Acc, an important
optimization for implementations.

Third, as a corollary of canonicity for 𝒯 ≡
Acc and of its conserva-

tivity over 𝒯 =
Acc, we also derive propositional canonicity3 for 𝒯 =

Acc,
stating that any closed term of type N is propositionally equal
to a numeral. Moreover, our canonicity results for 𝒯 =

Acc and 𝒯 ≡
Acc

are preserved in the presence of consistent axioms in SProp, like
the original canonicity results for SProp discussed previously. This
important aspect ensures for instance that programs whose ter-
mination relies on classical principles, such as excluded middle,
can still be evaluated.

Finally, we also establish the consistency of 𝒯 =
Acc by adapting the

set-theoretic model of Pujet et al. [2025], showing that our theory
can be used as an internal language for set-level mathematics, all
while preserving decidability and a sufficient form of canonicity.

Practical contribution. Justified by our theoretical results, we
have implemented in Rocq the combination of 𝒯 =

Acc with a proof
mode switch to 𝒯 ≡

Acc. This effectively allows users to enjoy the
definitional unfolding of well-founded fixpoints inside a proof envi-
ronment. Using an undecidable theory for proofs can seem scary, yet
interactive provers such as Rocq have a long history of safely includ-
ing potentially divergingmechanisms formaking proving easier: for
instance, tactics and automation have no termination guarantees.

To illustrate the benefits of our approach, we consider the case
of System F and its strong normalization proof, from which one
can derive an evaluator, and measure the performance of the evalu-
ator to establish basic arithmetic results over Church numerals by
computation. This simple case study shows that evaluating func-
tions through their termination proofs in Prop does not scale, and
that automatic rewriting with the propositional computation rule
for accessibility (𝒯 =

Acc) is orders of magnitude slower than direct
computation with its the definitional computation rule (𝒯 ≡

Acc).

Outline of the paper. §2 describes the two theories 𝒯 =
Acc and 𝒯

≡
Acc,

§3 establishes canonicity of 𝒯 ≡
Acc, §4 proves that 𝒯

≡
Acc is conservative

over 𝒯 =
Acc and that 𝒯 =

Acc satisfies propositional canonicity, and §5
justifies the consistency of both theories via a set-theoretic model.
Finally, §6 reports on an implementation of our proposal in Rocq,
and §7 concludes, discussing related and future work.

3Often called homotopy canonicity in the context of Homotopy Type Theory.

Formalization. Our results have been mechanized in the Rocq
prover (version 9.0), and are provided as anonymous supplementary
material. Definitions and theorems are referred to in the text using
the Rocq icon which marks a clickable link that points to an
online anonymized version.

The examples given in §6 use an extension of the current version
of Rocq (version 9.2) which is harder to anonymize but is available
on request.

Metatheory. Although we formalize the results in Rocq, our
metatheory is taken to be set theory. Therefore, we rely on the
fact that CIC can be used as an internal language for sets [Lee and
Werner 2011; Timany and Sozeau 2017].

2 Type Theories with Accessibility
In this section we formally introduce the systems 𝒯 =

Acc and 𝒯 ≡
Acc

mentioned in the introduction, which are both extensions of CICobs
as introduced by Pujet et al. [2025]. Since 𝒯 =

Acc is included in 𝒯 ≡
Acc,

we start by describing their common features before precisely ex-
plaining the extra feature of 𝒯 ≡

Acc.

Typing rules. Figs. 1 and 2 give the common typing and conver-
sion rules for 𝒯 =

Acc and 𝒯 ≡
Acc—congruence rules are omitted, we

refer to the formalization for the complete set of rules ( ). The
main typing judgments are Γ ⊢ℓ= 𝑡 : 𝐴 for 𝒯 =

Acc and Γ ⊢ℓ≡ 𝑡 : 𝐴 for
𝒯 ≡
Acc—we drop the subscript when referring to features and rules

common to both systems. They specify that, in the context Γ, the
term 𝑡 is typed by the term 𝐴, which lives in the type universe 𝒰ℓ .
Here, ℓ is a universe level, and can be either the impredicative level
Ω, or a predicative level 𝔫 ∈ {0, 1, 2, . . . }.4 As specified by rule
Proof-Irr, the universe 𝒰Ω is definitionally proof-irrelevant: any
two terms 𝑡 and 𝑢 of type 𝐴 are convertible as soon as 𝐴 is in 𝒰Ω .

Given a level ℓ , we define its next level ℓ+ by Ω+ := 0 and
𝔫+ := 1 + 𝔫, and rule Univ specifies that 𝒰ℓ has type 𝒰ℓ+ . Note that,
in the rules of Figs. 1 and 2, we omit the level ℓ in Γ ⊢ℓ 𝑡 : 𝐴 when
𝐴 is of the form 𝒰ℓ ′ to avoid the redundant annotation ℓ′+.

Aside from observational equality and accessibility, which we
explain later, the theory includes dependent functions (with 𝜂-
conversion) as well as natural numbers, in order to illustrate how
general inductive types can be handled. While the type of natural
numbers N lives in 𝒰0, the dependent function type Π

ℓ,ℓ ′ (𝑥 : 𝐴). 𝐵
formed with 𝐴 : 𝒰ℓ and 𝐵 : 𝒰ℓ ′ lives in the universe 𝒰ℓ∨ℓ ′ , where
ℓ ∨ ℓ′ is defined by ℓ ∨Ω := Ω, Ω ∨ ℓ := ℓ and 𝔫 ∨ 𝔫′ := max(𝔫, 𝔫′).

Fully annotated syntax. As can be seen in the typing rules, we
adopt a fully annotated syntax, by writing application as 𝑡@𝑥 :𝐴.𝐵

ℓ,ℓ ′ 𝑢,
abstraction as 𝜆𝑥 :𝐴.𝐵

ℓ,ℓ ′ 𝑥 . 𝑡 , etc. We do so as the annotations ensure
that well-typed terms can be organized into initial models for alge-
braic specifications of the two type theories [Brunerie et al. 2019;
Uemura 2021]—one could in principle work directly at this algebraic
level, but formalization of such developments in proof assistants
is still a challenge [Altenkirch and Kaposi 2016]. Nevertheless, in
order to avoid clutter, we allow ourselves to informally omit these
annotations in some cases, e.g., writing 𝑡 𝑢 for application and 𝜆𝑥 . 𝑡
for abstraction. In particular, for equality Eq𝔫 (𝐴, 𝑥,𝑦), we omit the

4In Rocq syntax, one writes Type𝔫 for 𝒰𝔫 and SProp for 𝒰Ω .
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Ctx-Nil

⊢ ·

Ctx-Cons
⊢ Γ Γ ⊢ 𝐴 : 𝒰ℓ

⊢ Γ, 𝑥 :ℓ 𝐴

Var
⊢ Γ (𝑥 :ℓ 𝐴) ∈ Γ

Γ ⊢ℓ 𝑥 : 𝐴

Ax
⊢ Γ (𝑐 : 𝐴) ∈ Σ · ⊢ 𝐴 : 𝒰Ω

Γ ⊢Ω 𝑐 : 𝐴

Conv
Γ ⊢ℓ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 : 𝒰ℓ

Γ ⊢ℓ 𝑡 : 𝐵

Univ
⊢ Γ

Γ ⊢ 𝒰ℓ : 𝒰ℓ+

Π-Form
Γ ⊢ 𝐴 : 𝒰ℓ Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰ℓ ′

Γ ⊢ Π
ℓ,ℓ ′ (𝑥 : 𝐴) . 𝐵 : 𝒰ℓ∨ℓ ′

Fun
Γ ⊢ 𝐴 : 𝒰ℓ Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰ℓ ′

Γ, 𝑥 : 𝐴 ⊢ℓ ′ 𝑡 : 𝐵

Γ ⊢ℓ∨ℓ ′ 𝜆𝑥 :𝐴.𝐵
ℓ,ℓ ′ 𝑥. 𝑡 : Π

ℓ,ℓ ′ (𝑥 : 𝐴) . 𝐵

App
Γ ⊢ 𝐴 : 𝒰ℓ Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰ℓ ′

Γ ⊢ℓ ′ 𝑡 : Π
ℓ,ℓ ′ (𝑥 : 𝐴) . 𝐵 Γ ⊢ℓ 𝑢 : 𝐴

Γ ⊢ℓ ′ 𝑡@𝑥 :𝐴.𝐵
ℓ,ℓ ′ 𝑢 : 𝐵 [𝑥 := 𝑢 ]

N-Form
⊢ Γ

Γ ⊢ N : 𝒰0

Zero
⊢ Γ

Γ ⊢0 0 : N

Succ
Γ ⊢0 𝑛 : N

Γ ⊢0 S(𝑛) : N

N-Elim
Γ,𝑚 : N ⊢ 𝑃 : 𝒰ℓ Γ ⊢ℓ 𝑡0 : 𝑃 [𝑚 := 0]

Γ, 𝑛 : N, 𝑥 : 𝑃 [𝑚 := 𝑛] ⊢ℓ 𝑡S : 𝑃 [𝑚 := S(𝑛) ] Γ ⊢0 𝑛 : N

Γ ⊢ℓ N-elℓ (𝑚.𝑃, 𝑡0, 𝑛𝑥 .𝑡S, 𝑛) : 𝑃 [𝑚 := 𝑛]

Eq-Form
Γ ⊢ 𝐴 : 𝒰𝔫

Γ ⊢𝔫 𝑎 : 𝐴 Γ ⊢𝔫 𝑏 : 𝐴

Γ ⊢ Eq𝔫 (𝐴,𝑎,𝑏 ) : 𝒰Ω

Refl
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴

Γ ⊢Ω refl𝔫 (𝑎,𝐴) : Eq𝔫 (𝐴,𝑎, 𝑎)

Cast
Γ ⊢ 𝐴 : 𝒰ℓ Γ ⊢ 𝐵 : 𝒰ℓ

Γ ⊢Ω 𝑒 : Eq (𝒰ℓ , 𝐴, 𝐵) Γ ⊢ℓ 𝑎 : 𝐴

Γ ⊢ℓ castℓ (𝐴, 𝐵, 𝑒, 𝑎) : 𝐵

Transp
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑃 : 𝒰Ω

Γ ⊢Ω 𝑝 : 𝑃 [𝑥 := 𝑎] Γ ⊢𝔫 𝑏 : 𝐴 Γ ⊢Ω 𝑒 : Eq𝔫 (𝐴,𝑎,𝑏 )
Γ ⊢Ω transp𝔫 (𝐴,𝑎, 𝑥 .𝑃, 𝑝,𝑏, 𝑒 ) : 𝑃 [𝑥 := 𝑏 ]

Eq-Π1
Γ ⊢ 𝐴𝑖 : 𝒰ℓ Γ, 𝑥 : 𝐴𝑖 ⊢ 𝐵𝑖 : 𝒰𝔫 (for 𝑖 = 1, 2)
Γ ⊢Ω 𝑒 : Eq (𝒰ℓ∨𝔫,Π (𝑥 : 𝐴1 ) . 𝐵1,Π (𝑥 : 𝐴2 ) . 𝐵2 )
Γ ⊢Ω Πℓ,𝔫

inj1 (𝐴1, 𝑥 .𝐵1, 𝐴2, 𝑥 .𝐵2, 𝑒 ) : Eq (𝒰ℓ , 𝐴2, 𝐴1 )

Eq-Π2
Γ ⊢ 𝐴𝑖 : 𝒰ℓ Γ, 𝑥 : 𝐴𝑖 ⊢ 𝐵𝑖 : 𝒰𝔫 (for 𝑖 = 1, 2)

Γ ⊢Ω 𝑒 : Eq (𝒰ℓ∨𝔫,Π (𝑥 : 𝐴1 ) . 𝐵1,Π (𝑥 : 𝐴2 ) . 𝐵2 ) Γ ⊢ℓ 𝑎2 : 𝐴2
𝑎1 := castℓ (𝐴2, 𝐴1,Π

ℓ,𝔫
inj1 (𝐴1, 𝑥 .𝐵1, 𝐴2, 𝑥 .𝐵2, 𝑒 ), 𝑎2 )

Γ ⊢Ω Πℓ,𝔫
inj2 (𝐴1, 𝑥 .𝐵1, 𝐴2, 𝑥 .𝐵2, 𝑒, 𝑎2 ) : Eq (𝒰𝔫, 𝐵1 [𝑥 := 𝑎1 ], 𝐵2 [𝑥 := 𝑎2 ] )

Acc-Form
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴
Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 ⊢ 𝑅 : 𝒰Ω

Γ ⊢ Acc𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎) : 𝒰Ω

Acc-in
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴 Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 ⊢ 𝑅 : 𝒰Ω

Γ ⊢Ω 𝑝 : Π (𝑏 : 𝐴) . 𝑏 ≺𝑅 𝑎 → Acc𝔫 (𝐴,𝑥𝑦.𝑅,𝑏 )
Γ ⊢Ω acc-in𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎, 𝑝 ) : Acc𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎)

Acc-inv
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴 Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 ⊢ 𝑅 : 𝒰Ω

Γ ⊢Ω 𝑝 : Acc𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎) Γ ⊢𝔫 𝑏 : 𝐴 Γ ⊢Ω 𝑟 : 𝑏 ≺𝑅 𝑎

Γ ⊢Ω acc-inv𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎, 𝑝,𝑏, 𝑟 ) : Acc𝔫 (𝐴,𝑥𝑦.𝑅,𝑏 )

Acc-el
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴 Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 ⊢ 𝑅 : 𝒰Ω

Γ ⊢Ω 𝑞 : Acc𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎) Γ, 𝑥 : 𝐴 ⊢ 𝑃 : 𝒰ℓ Γ, 𝑎 : 𝐴, 𝑧 : Π (𝑏 : 𝐴) . 𝑏 ≺𝑅 𝑎 → 𝑃 [𝑥 := 𝑏 ] ⊢ℓ 𝑝 : 𝑃 [𝑥 := 𝑎]
Γ ⊢ℓ acc-el𝔫,ℓ (𝐴,𝑥𝑦.𝑅, 𝑎, 𝑥 .𝑃, 𝑎𝑧.𝑝,𝑞) : 𝑃 [𝑥 := 𝑎]

Acc-el-prop
Γ ⊢ 𝐴 : 𝒰𝔫 Γ ⊢𝔫 𝑎 : 𝐴 Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 ⊢ 𝑅 : 𝒰Ω

Γ ⊢Ω 𝑞 : Acc (𝐴,𝑥𝑦.𝑅, 𝑎) Γ, 𝑥 : 𝐴 ⊢ 𝑃 : 𝒰𝔫′ Γ, 𝑎 : 𝐴, 𝑧 : Π (𝑏 : 𝐴) . 𝑏 ≺𝑅 𝑎 → 𝑃 [𝑥 := 𝑏 ] ⊢𝔫′ 𝑝 : 𝑃 [𝑥 := 𝑎]
𝑓 := 𝜆𝑏𝑟 . acc-el𝔫,𝔫

′ (𝐴,𝑥𝑦.𝑅,𝑏, 𝑥 .𝑃, 𝑎𝑧.𝑝, acc-inv𝔫 (𝐴,𝑥𝑦.𝑅, 𝑎,𝑞,𝑏, 𝑟 ) )

Γ ⊢Ω acc-el-comp𝔫,𝔫
′ (𝐴,𝑥𝑦.𝑅, 𝑎, 𝑥 .𝑃, 𝑎𝑧.𝑝,𝑞) : Eq (𝑃 [𝑥 := 𝑎], acc-el𝔫,𝔫′ (𝐴,𝑥𝑦.𝑅, 𝑎, 𝑥 .𝑃, 𝑎𝑧.𝑝,𝑞), 𝑝 [𝑧 := 𝑓 , 𝑎 := 𝑎] )

Figure 1: Common typing rules for 𝒯 =
Acc and 𝒯 ≡

Acc ( )

𝔫 superscript when the carrier type 𝐴 is of the form 𝒰ℓ , similarly
to our convention for level annotations on the typing judgment.

Axioms. The type system is actually parameterized by a signa-
ture Σ ( ), containing the declaration of axioms 𝑐 : 𝑃 , where 𝑃
lives in 𝒰Ω , and that can be introduced by the rule Ax. Although
Σ can be freely extended by users, we will assume that it contains
at least the axiom Πext for function extensionality, that is used in
the proof of § 4. This axiom is justified in presence of observa-
tional equality in the work of Pujet et al. [2025]; Pujet and Tabareau
[2022, 2023]. It states that, given 𝑓1, 𝑓2 of type Π(𝑥 : 𝐴). 𝐵, point-
wise equality Π(𝑥 : 𝐴) . Eq (𝐵, 𝑓1 𝑥, 𝑓2 𝑥) implies function equality
Eq (Π(𝑥 : 𝐴) . 𝐵, 𝑓1, 𝑓2).

We further assume that the type of any axiom declared in Σ is
well typed in 𝒯 ≡

Acc if it is well-typed in 𝒯 =
Acc ( ), an assumption

that is validated by the common axioms one uses in practice, such
as function extensionality and excluded middle.

Observational equality. In order to be compatible with defini-
tional proof irrelevance, our theories use observational equality [Al-
tenkirch et al. 2007; Pujet and Tabareau 2022]. The gist of this flavor
of equality is that it is eliminated via a type coercion operator (cast)
that computes by case analysis on types, instead of the usual J elim-
inator that computes by discriminating the equality proof—which
is unreasonable in the presence of definitional proof irrelevance.

Type coercions between two identical, non-parameterized types
such as N and 𝒰ℓ can be simply erased (a consequence of rule Cast-
Refl). When applied between two function types, cast returns a
function which first casts its argument to the domain of the original
function, invokes it, and then casts the result back to the expected

4
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Sym
Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴

Γ ⊢ℓ 𝑢 ≡ 𝑡 : 𝐴

Trans
Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴 Γ ⊢ℓ 𝑢 ≡ 𝑣 : 𝐴

Γ ⊢ℓ 𝑡 ≡ 𝑣 : 𝐴

𝜂-Eq
Γ ⊢ 𝐴 : 𝒰ℓ Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰ℓ ′

Γ ⊢ℓ∨ℓ ′ 𝑓𝑖 : Π (𝑥 : 𝐴) . 𝐵 (for 𝑖 = 1, 2)
Γ, 𝑥 : 𝐴 ⊢ℓ ′ 𝑓1 𝑥 ≡ 𝑓2 𝑥 : 𝐵

Γ ⊢ℓ∨ℓ ′ 𝑓1 ≡ 𝑓2 : Π (𝑥 : 𝐴) . 𝐵

Proof-Irr
Γ ⊢Ω 𝑡 : 𝐴 Γ ⊢Ω 𝑢 : 𝐴

Γ ⊢Ω 𝑡 ≡ 𝑢 : 𝐴

Conv-Conv
Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 : 𝒰ℓ

Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐵

𝛽-conv
Γ ⊢ 𝐴 : 𝒰ℓ Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰ℓ ′

Γ, 𝑥 : 𝐴 ⊢ℓ ′ 𝑡 : 𝐵 Γ ⊢ℓ 𝑢 : 𝐴

Γ ⊢ℓ ′ (𝜆𝑥 :𝐴.𝐵
ℓ,ℓ ′ 𝑥. 𝑡 )@𝑥 :𝐴.𝐵

ℓ,ℓ ′ 𝑢 ≡ 𝑡 [𝑥 := 𝑢 ] : 𝐵 [𝑥 := 𝑢 ]

N-Elim-Zero
Γ,𝑚 : N ⊢ 𝑃 : 𝒰ℓ Γ ⊢ℓ 𝑡0 : 𝑃 [𝑚 := 0]

Γ, 𝑛 : N, 𝑥 : 𝑃 [𝑚 := 𝑛] ⊢ℓ 𝑡S : 𝑃 [𝑚 := S(𝑛) ]
Γ ⊢ℓ N-elℓ (𝑚.𝑃, 𝑡0, 𝑛𝑥 .𝑡S, 0) ≡ 𝑡0 : 𝑃 [𝑚 := 0]

N-Elim-Succ
Γ,𝑚 : N ⊢ 𝑃 : 𝒰ℓ Γ ⊢ℓ 𝑡0 : 𝑃 [𝑚 := 0]

Γ, 𝑛 : N, 𝑥 : 𝑃 [𝑚 := 𝑛] ⊢ℓ 𝑡S : 𝑃 [𝑚 := S(𝑛) ] Γ ⊢ 𝑛 : N 𝑡𝑛 := N-elℓ (𝑚.𝑃, 𝑡0, 𝑛𝑥 .𝑡S, 𝑛)
Γ ⊢ℓ N-elℓ (𝑚.𝑃, 𝑡0, 𝑛𝑥 .𝑡S, S(𝑛) ) ≡ 𝑡S [𝑛 := 𝑛, 𝑥 := 𝑡𝑛 ] : 𝑃 [𝑚 := S(𝑛) ]

Cast-Refl
Γ ⊢ 𝐴 : 𝒰ℓ

Γ ⊢Ω 𝑒 : Eq (𝒰ℓ , 𝐴,𝐴) Γ ⊢ℓ 𝑡 : 𝐴
Γ ⊢ℓ castℓ (𝐴,𝐴, 𝑒, 𝑡 ) ≡ 𝑡 : 𝐴

Cast-Π
Γ ⊢ 𝐴𝑖 : 𝒰ℓ Γ, 𝑥 : 𝐴𝑖 ⊢ 𝐵𝑖 : 𝒰𝔫 (for 𝑖 = 1, 2) Γ ⊢Ω 𝑒 : Eq (𝒰ℓ∨𝔫,Π (𝑥 : 𝐴1 ) . 𝐵1,Π (𝑥 : 𝐴2 ) . 𝐵2 )

Γ ⊢ℓ∨𝔫 𝑓 : Π (𝑥 : 𝐴1 ) . 𝐵1 𝑎1 := castℓ (𝐴2, 𝐴1,Πinj1 (𝐴1, 𝑥 .𝐵1, 𝐴2, 𝑥 .𝐵2, 𝑒 ), 𝑎2 ) 𝑒′ := Πinj2 (𝐴1, 𝑥 .𝐵1, 𝐴2, 𝑥 .𝐵2, 𝑒, 𝑎2 )
Γ ⊢ℓ∨𝔫 castℓ∨𝔫 (Π (𝑥 : 𝐴1 ) . 𝐵1,Π (𝑥 : 𝐴2 ) . 𝐵2, 𝑒, 𝑓 ) ≡ 𝜆𝑎2 .cast𝔫 (𝐵1 [𝑥 := 𝑎1 ], 𝐵2 [𝑥 := 𝑎2 ], 𝑒′, 𝑓 𝑎1 ) : Π (𝑥 : 𝐴2 ) . 𝐵2

Figure 2: Common conversion rules for 𝒯 =
Acc and 𝒯 ≡

Acc (congruence rules omitted) ( )

type (as specified in Cast-Π). Here, we draw the reader’s attention
to an important subtlety: since cast computes by making recursive
calls on subtypes, we must impose that type formers in proof-
relevant universes (𝒰𝔫 with 𝔫 = 0, 1, . . . ) are injective. In the case
of function types, this is achieved by the symbols Πinj1 and Πinj2,
used in rule Cast-Π.

Aside from cast, observational equality supports a transp opera-
tor for eliminating into proof irrelevant types. From cast and transp,
it is possible to derive the usual J eliminator, which computes as
expected thanks to rule Cast-Refl [Pujet et al. 2025; Pujet and
Tabareau 2022].

Accessibility. To support definitions by well-founded recursion,
our theory features an accessibility predicate. Given a term 𝑎 of type
𝐴 : 𝒰ℓ and a binary relation 𝑅 on this type, the type Accℓ (𝐴, 𝑅, 𝑎) as-
serts that 𝑎 is accessible—a constructive form of well-foundedness—
for the relation 𝑅. Importantly, its eliminator acc-el may target
proof-relevant types 𝑃 in arbitrary universes, as can be seen in the
typing rule Acc-el (there and in the other rules, we write 𝑏 ≺𝑅 𝑎

instead of 𝑅 [𝑥 := 𝑏,𝑦 := 𝑎] to avoid clutter).
Both theories 𝒯 ≡

Acc and 𝒯
=
Acc feature the rule Acc-el-prop, stating

the computational rule for acc-el propositionally. However, 𝒯 ≡
Acc

additionally feature the following rule Acc-el-def, including the
computation rule as part of the conversion. The symbol acc-el-comp
is therefore redundant in 𝒯 ≡

Acc, yet we chose to have it so that 𝒯 =
Acc

is included in 𝒯 ≡
Acc, easing the statement of conservativity.

Acc-el-def
(same premises as Acc-el-prop, replacing ⊢ with ⊢≡)

Γ ⊢𝔫
′

≡ acc-el𝔫,𝔫
′
(𝐴, 𝑥𝑦.𝑅, 𝑎, 𝑥 .𝑃, 𝑎𝑧.𝑝, 𝑞) ≡ 𝑝 [𝑧 := 𝑓 , 𝑎 := 𝑎] : 𝑃 [𝑥 := 𝑎]

Aside from the introduction and elimination rules for Acc, both
theories also include a symbol acc-inv which, given a proof of that 𝑎
is accessible, asserts that all𝑏 smaller than 𝑎 are also accessible. This
fact is derivable from acc-el, so acc-inv is actually redundant. Yet,

because acc-inv is used to state rules Acc-el-def and Acc-el-prop,
its addition simplifies writing, in particular in the formalization.

Metatheoretic properties. We formally prove in Rocq that both
theories satisfy the basic properties expected of all type theories:
weakening ( ), substitution ( ), as well as validity ( ), asserting
that Γ ⊢ℓ 𝑡 : 𝐴 implies ⊢ Γ and Γ ⊢ 𝐴 : 𝒰ℓ , and that Γ ⊢ℓ 𝑡1 ≡ 𝑡2 : 𝐴
implies Γ ⊢ℓ 𝑡𝑖 : 𝐴 for 𝑖 = 1, 2.

Moreover, aside from minor syntactic differences, 𝒯 =
Acc is an

extension of CICobs with new symbols, but, crucially, no equations
(aside from congruence rules). Therefore, decidability of typing and
injectivity of function types of 𝒯 =

Acc directly follow from the fact
that these properties hold for CICobs [Pujet et al. 2025]: indeed,
the extra symbols of 𝒯 =

Acc can be understood in CICobs simply as
extra variables in the context. Importantly, these properties also
ensure that, in the setting of a practical implementation, a user-
friendly unannotated syntax can be correctly elaborated into the
core verbose syntax, using bidirectional typing [Felicissimo 2025;
Lennon-Bertrand 2021].

3 Canonicity of 𝒯 ≡
Acc

In this section we prove that the theory 𝒯 ≡
Acc enjoys canonicity,

despite its conversion being undecidable. For this, we adapt the
logical relation for decidability of typing of Abel et al. [2018], but
strip out all the machinery for handling open terms and neutrals,
which are not needed for canonicity.

Convention 3.1. In this section, all typing judgments refer to the
theory 𝒯 ≡

Acc, so we just write ⊢ℓ instead of ⊢ℓ≡.

Metatheory and assumptions. The metatheory of our proof is
CIC, as witnessed by our Rocq formalization. We however need to
work under the two following assumptions. To state them, let us
say that a term 𝐴 is a canonical relevant type if 𝐴 = N or 𝐴 = 𝒰ℓ

or 𝐴 = Π
ℓ,𝔫

(𝑥 : 𝑇 ).𝑈 (note that we ask the codomain level to be
5
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different from Ω, otherwise the whole type would live in 𝒰Ω). We
then say that two canonical relevant types 𝐴 and 𝐵 have the same
head when 𝐴 = 𝐵 = N or 𝐴 = 𝐵 = 𝒰ℓ or 𝐴 = Π

ℓ,𝔫
(𝑥 : 𝑇 ) .𝑈 and

𝐵 = Π
ℓ ′,𝔫′ (𝑥 : 𝑇 ′).𝑈 ′ with ℓ = ℓ′ and 𝔫 = 𝔫′.

Assumption A. ( ) If𝐴 and 𝐵 are canonical proof-relevant types
that do not have the same head, then for no 𝑒 we have ⊢ 𝑒 :
Eq (𝒰ℓ , 𝐴, 𝐵).

Assumption B. ( ) If ⊢ 𝑒 : Acc𝔫 (𝐴, 𝑥𝑦.𝑅, 𝑎) for some 𝑒 , then the
relation 𝑅 that is defined on closed terms of type 𝐴 by 𝑅(𝑡,𝑢) iff
∃𝑝. ⊢ 𝑝 : 𝑡 ≺𝑅 𝑢 is well founded.
In § 5 we show that these assumptions can be proven in set

theory by defining amodel of 𝒯 ≡
Acc, assuming that the user-specified

axioms in Σ are validated in set theory. Viewing CIC as an internal
language for sets therefore yields an assumption-free proof. We
conjecture that these assumptions can be proved in other (possibly
more constructive) metatheories.

Reduction. Following Abel et al. [2018], to define the logical rela-
tion we first need to consider a deterministic weak-head reduction
judgment, written Γ ⊢ 𝑡 −→ 𝑢 : 𝐴 ( ). We omit the definition
here for brevity, but most of its rules are adapted from the main
conversion rules for 𝒯 ≡

Acc. Let us however mention that, because of
the use of fully annotated syntax, the previous rule for 𝛽-equality
needs also to be further adapted to allow type annotations to differ,
as long as they remain convertible. We therefore have the following
reduction rule:

𝛽-conv
Γ ⊢ 𝐴 ≡ 𝐴′ : 𝒰ℓ Γ, 𝑥 : 𝐴 ⊢ 𝐵 ≡ 𝐵′ : 𝒰ℓ ′

Γ, 𝑥 : 𝐴 ⊢ℓ
′
𝑡 : 𝐵 Γ ⊢ℓ 𝑢 : 𝐴

Γ ⊢ℓ
′
(𝜆𝑥 :𝐴

′ .𝐵′
ℓ,ℓ ′ 𝑥 . 𝑡)@𝑥 :𝐴.𝐵

ℓ,ℓ ′ 𝑢 −→ 𝑡 [𝑥 := 𝑢] : 𝐵 [𝑥 := 𝑢]

We then write Γ ⊢ 𝑡 −→−→ 𝑢 : 𝐴 ( ) for the reflexive-transitive
closure of reduction, and Γ ⊢ 𝑡 ↘ 𝑢 : 𝐴 ( ) when Γ ⊢ 𝑡 −→−→ 𝑢 : 𝐴
and 𝑢 is irreducible.

The logical relation. We define the logical relation as a predicate
⊩ℓ 𝐴 ≡ 𝐵 ↓ 𝑅, asserting that 𝐴 and 𝐵 are reducibly convertible at
the universe 𝒰ℓ , and yielding a reducibility binary relation 𝑅 for
terms of type 𝐴 or 𝐵.

For this, we first define the following relations, which capture
the term-level reducibility relations for elements of the function
and natural number types. The relation N̂ ( ) specifies that two
terms 𝑡,𝑢 are reducibly convertible natural numbers when they
iteratively reduce to the same canonical natural number. The rela-
tion Π̂ℓ,𝔫 [𝑇1,𝑇2, 𝑅𝑇 ,𝑈1,𝑈2, 𝑅𝑈 ] ( ) specifies that two terms 𝑓1, 𝑓2
are reducibly convertible functions when they are convertible and,
omitting annotations, 𝑓1 𝑡1 and 𝑓2 𝑡2 are related by 𝑅𝑈 [𝑡1, 𝑡2] when-
ever 𝑡1, 𝑡2 are related by 𝑅𝑇 . The relation 𝑅𝑈 is thus parameterized
over pairs of terms.

⊢ 𝑡𝑖 ↘ S(𝑢𝑖 ) : N N̂(𝑢1, 𝑢2)
N̂(𝑡1, 𝑡2)

⊢ 𝑡𝑖 ↘ 0 : N

N̂(𝑡1, 𝑡2)

⊢ 𝑓1 ≡ 𝑓2 : Πℓ,𝔫 (𝑥 : 𝑇1) .𝑈1
∀𝑡1𝑡2 . 𝑅𝑇 (𝑡1, 𝑡2) ⇒ 𝑅𝑈 [𝑡1, 𝑡2] (𝑓1@𝑥 :𝑇1 .𝑈1

ℓ,𝔫
𝑡1, 𝑓2@𝑥 :𝑇2 .𝑈2

ℓ,𝔫
𝑡2)

Π̂ℓ,𝔫 [𝑇1,𝑇2, 𝑅𝑇 ,𝑈1,𝑈2, 𝑅𝑈 ] (𝑓1, 𝑓2)

Next, we define ⊩ℓ 𝐴1 ≡ 𝐴2 ↓ 𝑅 ( ) by the following rules.
The definition is actually also by well-founded induction over ℓ
(considering Ω as smaller than all the predicative levels), so we
assume this judgment to be already defined for all smaller ℓ . In
these rules, we write 𝑅 ↔ 𝑅′ when the relations 𝑅 and 𝑅′ are
equivalent.

⊢ 𝐴1 ≡ 𝐴2 : 𝒰Ω 𝑅 ↔ {(𝑡1, 𝑡2) | ⊢Ω 𝑡1 ≡ 𝑡2 : 𝐴1}
⊩Ω 𝐴1 ≡ 𝐴2 ↓ 𝑅

⊢ 𝐴𝑖 ↘ 𝒰ℓ : 𝒰ℓ+

𝑅 ↔ {(𝐵1, 𝐵2) | ∃𝑅′ . ⊩ℓ 𝐵1 ≡ 𝐵2 ↓ 𝑅′}

⊩ℓ
+
𝐴1 ≡ 𝐴2 ↓ 𝑅

⊢ 𝐴𝑖 ↘ N : 𝒰0
𝑅 ↔ N̂

⊩0 𝐴1 ≡ 𝐴2 ↓ 𝑅

⊢ 𝐴𝑖 ↘ Πℓ,𝔫 (𝑥 : 𝑇𝑖 ) .𝑈𝑖 : 𝒰ℓ∨𝔫
𝑥 : 𝑇1 ⊢ 𝑈1 ≡ 𝑈2 : 𝒰𝔫 ⊩ℓ 𝑇1 ≡ 𝑇2 ↓ 𝑅𝑇

∀𝑡1𝑡2 . 𝑅𝑇 (𝑡1, 𝑡2) ⇒ ⊩𝔫 𝑈1 [𝑥 := 𝑡1] ≡ 𝑈2 [𝑥 := 𝑡2] ↓ 𝑅𝑈 [𝑡1, 𝑡2]
𝑅 ↔ Π̂ℓ,𝔫 [𝑇1,𝑇2, 𝑅𝑇 ,𝑈1,𝑈2, 𝑅𝑈 ]

⊩ℓ∨𝔫 𝐴1 ≡ 𝐴2 ↓ 𝑅
Because we are in a setting with definitional proof irrelevance,

we do not need to evaluate proofs—and very likely cannot, given
the result of Abel and Coquand [2020]—and so the logical relation
at ℓ = Ω only asks for convertibility. For relevant types, the rules
state that 𝐴1 and 𝐴2 are reducibly convertible when they reduce to
the same type former, and the associated relation 𝑅 is equivalent
to the expected one. In the case of function types, we additionally
ask for 𝑇1 and 𝑇2 to be reducibly convertible with relation 𝑅𝑇 , and
for 𝑈1 [𝑥 := 𝑡1] and 𝑈2 [𝑥 := 𝑡2] to be reducibly convertible with
relation 𝑅𝑈 [𝑡1, 𝑡2] for all 𝑡1, 𝑡2 related by 𝑅𝑇 . In the case for the
universe type, the associated relation 𝑅 relates 𝐵1, 𝐵2 iff we have
⊩ℓ 𝐵1 ≡ 𝐵2 ↓ 𝑅′ for some 𝑅′. This definition therefore mentions ⊩
in a non-strictly positive way, yet this is justified because it is used
with ℓ which is strictly smaller than ℓ+, and so ⊩ℓ is already fully
defined at this stage. Finally, note that, interestingly, there are no
rules for handling accessibility and equality, given that such types
live in 𝒰Ω .

Remark 3.1. Compared with Abel et al. [2018]; Pujet et al. [2025],
we only have the binary version of the logical relation and define it
simply as an inductive predicate, instead of relying on induction-
recursion; two changes which, we believe, make the definition
shorter and easier to understand. On this specific aspect, our defi-
nitions are hence closer to the ones of Gratzer et al. [2019]; Jang
et al. [2025].

Validity. As usual with canonicity proofs, we use the logical
relation to define a model for 𝒯 ≡

Acc that will allow us to directly
derive canonicity. Of course, the model cannot interpret conversion
simply by ∃𝑅. ⊩ 𝐴 ≡ 𝐵 ↓ 𝑅. Indeed, a model needs to be defined
for all terms, including open terms. The correct interpretation is
instead captured by the notion of validity. For its definition, we first
need to extend the logical relation to substitutions, in the following
manner ( ).

⊩ · ≡ · : (·)

⊩ 𝜎1 ≡ 𝜎2 : Γ
⊩ℓ 𝐴[𝜎1] ≡ 𝐴[𝜎2] ↓ 𝑅 𝑅(𝑡1, 𝑡2)

⊩ (𝜎1, 𝑥 := 𝑡1) ≡ (𝜎2, 𝑥 := 𝑡2) : Γ, 𝑥 :ℓ 𝐴
6
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Now, the validity judgments ( ) can be defined as follows.

• Γ ⊨ℓ 𝑡 ≡ 𝑢 : 𝐴 holds if, for all 𝜎1, 𝜎2, ⊩ 𝜎1 ≡ 𝜎2 : Γ implies
⊩ℓ 𝐴[𝜎1] ≡ 𝐴[𝜎2] ↓ 𝑅 and 𝑅(𝑡 [𝜎1], 𝑢 [𝜎2]) for some 𝑅.

• Γ ⊨ℓ 𝑡 : 𝐴 holds if Γ ⊨ℓ 𝑡 ≡ 𝑡 : 𝐴 holds.

Our main goal is now to show that the relations Γ ⊨ℓ 𝑡 : 𝐴
and Γ ⊨ℓ 𝑡 ≡ 𝑢 : 𝐴 are indeed models of 𝒯 ≡

Acc—this is exactly the
fundamental theorem of the logical relation.

Basic properties of the logical relation. Before proving the funda-
mental theorem, we first establish some usual basic properties [Abel
et al. 2018].

Lemma 3.1 (Escape ). Suppose ⊩ℓ 𝐴 ≡ 𝐵 ↓ 𝑅. Then we have
⊢ 𝐴 ≡ 𝐵 : 𝒰ℓ . Moreover, 𝑅(𝑡,𝑢) implies ⊢ 𝑡 ≡ 𝑢 : 𝐴 for all 𝑡,𝑢.

The above lemma is the reason we add conversion premises
between 𝑓1, 𝑓2 and 𝑈1,𝑈2 in the rules for functions in the logical
relation. Without them, any two terms 𝑓1, 𝑓2 would for instance be
related by Π̂ as soon as the relation 𝑅𝑇 is empty (eg., if𝑇1 = 𝑇2 = ⊥
with ⊥ := Π𝑃 : 𝒰Ω .𝑃 , in which case 𝑅𝑇 (𝑡1, 𝑡2) is equivalent to
⊢ 𝑡1 ≡ 𝑡2 : ⊥).

Lemma 3.2 (Closure under reduction and anti-reduction
/ ). Assume ⊩ℓ 𝐴1 ≡ 𝐴2 ↓ 𝑅.
• If ⊢ 𝐴𝑖 −→−→ 𝐴′

𝑖
: 𝒰ℓ (for 𝑖 = 1, 2) or ⊢ 𝐴′

𝑖
−→−→ 𝐴𝑖 : 𝒰ℓ (for

𝑖 = 1, 2) then ⊩ℓ 𝐴′
1 ≡ 𝐴′

2 ↓ 𝑅.
• If 𝑅(𝑡1, 𝑡2) and either ⊢ 𝑡𝑖 −→−→ 𝑡 ′

𝑖
: 𝒰ℓ (for 𝑖 = 1, 2) or ⊢ 𝑡 ′

𝑖
−→−→

𝑡𝑖 : 𝒰ℓ (for 𝑖 = 1, 2) then 𝑅(𝑡 ′1, 𝑡
′
2).

Compared with prior work, the use of a fully annotated syntax
introduces the need for the following annotation conversion result
for applications, used to show irrelevance of the logical relation
(Lemma 3.4). The proof of Lemma 3.3 goes by showing a stronger
statement ( ) with a more general annotation conversion relation
( ), but we omit it here for brevity.

Lemma 3.3 (Annotation conversion / ). Assume we have
⊩ℓ 𝐴 ≡ 𝐵 ↓ 𝑅 and ⊢ 𝑇1 ≡ 𝑇2 : 𝒰ℓ and 𝑥 : 𝑇1 ⊢ 𝑈1 ≡ 𝑈2 : 𝒰ℓ ′ . If
𝑅(𝑡@𝑥 :𝑇1 .𝑈1

ℓ,ℓ ′ 𝑢, 𝑣) then 𝑅(𝑡@𝑥 :𝑇2 .𝑈2
ℓ,ℓ ′ 𝑢, 𝑣), and if 𝑅(𝑣, 𝑡@𝑥 :𝑇1 .𝑈1

ℓ,ℓ ′ 𝑢) then
𝑅(𝑣, 𝑡@𝑥 :𝑇2 .𝑈2

ℓ,ℓ ′ 𝑢).

Lemma 3.4 (Irrelevance ). If ⊩ℓ 𝐴 ≡ 𝐵 ↓ 𝑅 and ⊩ℓ 𝐴 ≡ 𝐵′ ↓
𝑅′ then 𝑅 ↔ 𝑅′.

Lemma 3.5 (Symmetry / ). If⊩ℓ 𝐴 ≡ 𝐵 ↓ 𝑅 then⊩ℓ 𝐵 ≡ 𝐴 ↓ 𝑅
and 𝑅 is a symmetric relation.

Lemma 3.6 (Transitivity / ). If ⊩ℓ 𝐴 ≡ 𝐵 ↓ 𝑅 and ⊩ℓ 𝐵 ≡
𝐶 ↓ 𝑅 then ⊩ℓ 𝐴 ≡ 𝐶 ↓ 𝑅 and 𝑅 is a transitive relation.

Recall that a relation is a partial equivalent relation (PER) when
it is symmetric and transitive.

Lemma 3.7 (Substitution reducibility is a PER / ). The
relation ⊩ _ ≡ _ : Γ is a PER for all Γ.

The relation Γ ⊩ℓ _ ≡ _ : 𝐴 is a PER for all Γ, ℓ, 𝐴.

Lemma 3.8 (Validity is a PER / ).

Fundamental theorem. The hardest step of the proof is show-
ing the fundamental theorem, which establishes that the validity
judgments correctly interpret the theory 𝒯 ≡

Acc.

Theorem 3.9 (Fundamental theorem / ). If Γ ⊢ℓ 𝑡 : 𝐴 then
Γ ⊨ℓ 𝑡 : 𝐴, and if Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴 then Γ ⊨ℓ 𝑡 ≡ 𝑢 : 𝐴.

The proof of the fundamental theorem consists in showing that
each of the typing rules holds when interpreting the judgments
using validity. Most rules, such as the ones pertaining to functions
and natural numbers, are handled similarly to prior work [Abel
et al. 2018; Adjedj et al. 2024; Pujet et al. 2025]. The only interesting
cases are cast and acc-el. The rules for cast are handled similarly to
Pujet et al. [2025], so we will not detail the proof here, but simply
mention that it relies on Assumption A.5

Handling acessibility. Let us now discuss the main novel aspect
of this section: handling of the eliminator of accessibility in the
proof of the fundamental theorem (Theorem 3.9). To illustrate the
difficulty of handling acc-el, let us first explain the usual strategy for
handling eliminators for positive types, focusing on the eliminator
of naturals, N-el.

To prove that N-el is handled by the model, we must prove the
following implication, represented here as an inference rule for
readability purposes:

Γ,𝑚 : N ⊨ 𝑃 : 𝒰ℓ Γ ⊨ℓ 𝑡0 : 𝑃 [𝑚 := 0]
Γ, 𝑛 : N, 𝑥 : 𝑃 [𝑚 := 𝑛] ⊨ℓ 𝑡S : 𝑃 [𝑚 := S(𝑛)] Γ ⊨0 𝑛 : N

Γ ⊨ℓ N-elℓ (𝑚.𝑃, 𝑡0, 𝑛𝑥 .𝑡S, 𝑛) : 𝑃 [𝑚 := 𝑛]

Unfolding the definition of validity, we must show that, for
all 𝜎1, 𝜎2 satisfying ⊩ 𝜎1 ≡ 𝜎2 : Γ, the terms N-el(. . . ) [𝜎1] and
N-el(. . . ) [𝜎2] are reducibly convertible. Instantiating Γ ⊨0 𝑛 : N
with ⊩ 𝜎1 ≡ 𝜎2 : Γ, we easily obtain that N̂(𝑛[𝜎1], 𝑛[𝜎2]).

With N̂(𝑛[𝜎1], 𝑛[𝜎2]) in hand, we can show the result by induc-
tion on its derivation.6 Indeed, we either have that ⊢ 𝑛[𝜎𝑖 ] ↘ 0 : N
or ⊢ 𝑛[𝜎𝑖 ] ↘ S(𝑢𝑖 ) : N and N̂(𝑢1, 𝑢2). In both cases, we then con-
clude using the validity premises for 𝑡0 and 𝑡𝑆 and closure under
anti-reduction, with the successor case also using the induction
hypothesis.

Let us see now why the same approach breaks for acc-el.

Γ ⊨ 𝐴 : 𝒰𝔫 Γ ⊨𝔫 𝑎 : 𝐴 Γ, 𝑥 : 𝐴,𝑦 : 𝐴 ⊨ 𝑅 : 𝒰Ω

Γ ⊨Ω 𝑞 : Acc (𝐴, 𝑥𝑦.𝑅, 𝑎) Γ, 𝑥 : 𝐴 ⊨ 𝑃 : 𝒰ℓ ′

Γ, 𝑎 : 𝐴, 𝑧 : Π(𝑏 : 𝐴) . 𝑏 ≺𝑅 𝑎 → 𝑃 [𝑥 := 𝑏] ⊨ℓ
′
𝑝 : 𝑃 [𝑥 := 𝑎]

Γ ⊨ℓ
′
acc-el𝔫,ℓ

′
(𝐴, 𝑥𝑦.𝑅, 𝑎, 𝑥 .𝑃, 𝑎𝑧.𝑝, 𝑞) : 𝑃 [𝑥 := 𝑎]

When instantiating Γ ⊨ 𝑞 : Acc𝔫 (𝐴, 𝑥𝑦.𝑅, 𝑎) with ⊩ 𝜎1 ≡ 𝜎2 :
Γ we do not get any useful information for doing an induction
anymore. Indeed, recall that the logical relation at level ℓ = Ω is
defined simply as conversion, so we only get ⊢ 𝑞 [𝜎1] ≡ 𝑞 [𝜎2] :
Acc𝔫 (𝐴, 𝑥𝑦.𝑅, 𝑎) [𝜎1].

5Assumption A is actually not required by Pujet et al. [2025] for proving the funda-
mental theorem, as their logical relation includes neutral terms. On the other hand, for
that same reason, their logical relation does not directly imply canonicity. To conclude
it, they additionally need to rule out the existence of neutrals in the empty context, a
fact that implies our Assumption A, and that they also establish using a set-theoretic
model.
6Actually, we first need to massage the validity premises for 𝑡0 and 𝑡𝑆 using ⊩ 𝜎1 ≡
𝜎2 : Γ, but we deliberately simplify the description for clarity.
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This is where Assumption B plays a critical role, as it allows
us to deduce from ⊢ 𝑞 [𝜎1] : Acc𝔫 (𝐴, 𝑥𝑦.𝑅, 𝑎) [𝜎1] that the relation�𝑅 [𝜎1], defined on closed terms of type 𝐴[𝜎1] by �𝑅 [𝜎1] (𝑡,𝑢) iff
∃𝑝. ⊢ 𝑝 : 𝑡 ≺𝑅 [𝜎1 ] 𝑢, is well founded, allowing us to proceed by
well-founded induction over it.

With the induction set up, the proof goes essentially in the
same spirit as the one for N-el, using the validity premise for
𝑝 to construct reducibly convertible terms which are reducts of
acc-el𝔫,ℓ

′ (𝐴, 𝑥𝑦.𝑅, 𝑎, 𝑥 .𝑃, 𝑎𝑧.𝑝, 𝑞) [𝜎𝑖 ], and then concluding by clo-
sure under anti-reduction and the induction hypothesis. As usual
with such proofs, the complete argument is full of administrative
details—we refer the reader to the formalization for a detailed ac-
count ( ).

Canonicity. We obtain canonicity as a direct consequence of the
definition of the logical relation and Theorem 3.9.

Corollary 3.10 (Canonicity for 𝒯 ≡
Acc ). If ⊢ 𝑡 : N then we

have ⊢ 𝑡 ≡ S𝑛 (0) : N for some 𝑛.

Canonicity asserts the existence of a concrete numeral 𝑛 such
that 𝑡 is convertible to S𝑛 (0), without saying how to compute it.
Of course, in an actual implementation, one would like to employ
the usual untyped reduction algorithm operating on unannotated
terms, as in Rocq. We thus show an effective version of canonicity
justifying this strategy.

For this, we first consider a grammar of unannotated terms in
which application is written as 𝑡 𝑢, abstraction as 𝜆𝑥 .𝑡 , etc ( ),
and define an erasure function |−| ( ) mapping a standard term to
its unannotated version. Then, we redefine the previous notion of
weak-head reduction for unannotated terms in a totally untyped
way as the relation 𝑡 −→ 𝑢 ( ), from which we define 𝑡 −→−→ 𝑢

( ) as its symmetric-transitive closure. Finally, we define 𝑡 ⇓ 𝑛

( ) by 𝑡 ⇓ 0 when we have 𝑡 −→−→ 0, and 𝑡 ⇓ 𝑛 + 1 when we have
both 𝑡 −→−→ S(𝑢) and 𝑢 ⇓ 𝑛.

Corollary 3.11 (Effective Canonicity for 𝒯 ≡
Acc ). If ⊢ 𝑡 : N

then ⊢ 𝑡 ≡ S𝑛 (0) : N for the unique 𝑛 such that |𝑡 | ⇓ 𝑛.

4 Conservativity of 𝒯 ≡
Acc over 𝒯

=
Acc

We establish conservativity of 𝒯 ≡
Acc over 𝒯

=
Acc using a translation

technique inspired by Winterhalter et al. [2019]. We present the
key technical ingredients of the argument, while omitting some
details that are fully formalized in Rocq.

Let us first give the high-level plan for the proof. The main idea
is to define a translation from 𝒯 ≡

Acc to 𝒯 =
Acc in which conversion

is translated as propositional equality and the conversion rule is
simulated by casting along the obtained equality proof. Translated
terms then become decorated with occurrences of cast, and two
occurrences of the same term might be decorated differently. We
address this by showing the fundamental lemma of the translation,
ensuring that different decorations of the same term can be shown
equal in 𝒯 =

Acc. With the fundamental lemma and the translation
from 𝒯 ≡

Acc to 𝒯 =
Acc proven, conservativity follows as a corollary.

Heterogeneous equality. As for Winterhalter et al. [2019], a key
ingredient of our proof is the use of McBride’s heterogeneous equal-
ity, which allows to equate terms at different types. We define

HEq𝔫 (𝐴, 𝐵, 𝑎, 𝑏) in 𝒯 =
Acc as

7

Σ(𝑒 : Eq (𝒰𝔫, 𝐴, 𝐵)). Eq (𝐵, cast (𝐴, 𝐵, 𝑒, 𝑎), 𝑏)

For uniformity reasons, it will be more convenient to have HEq at
all levels, so we extend the above definition with HEqΩ (𝐴, 𝐵, 𝑎, 𝑏) :=
⊤, where ⊤ := Π(𝑃 : 𝒰Ω). 𝑃 → 𝑃 .

Decorations. As mentioned, our proof employs a decoration re-
lation between terms of 𝒯 ≡

Acc and terms of 𝒯 =
Acc, that is essentially

the identity up to cast. Formally, 𝑡 ⊏ 𝑢 ( ) is the least reflexive-
transitive relation containing 𝑎 ⊏ castℓ (𝐴, 𝐵, 𝑎, 𝑒) for all ℓ, 𝐴, 𝐵, 𝑎, 𝑒
and compatible with all constructors of the syntax. We extend ⊏
pointwise to contexts ( ), and write ∼ ( ) for the reflexive, sym-
metric, transitive closure of ⊏.

The fundamental lemma. To state the fundamental lemma, let
us say that two contexts Γ1 and Γ2 are compatible ( ) if they
have the same variables (modulo 𝛼-renaming) in the same or-
der and annotated with the same levels. In this case, we define
Γ1 ∗ Γ2 ( ) as the context containing entries 𝑥1 :ℓ 𝐴1, 𝑥2 :ℓ 𝐴2, 𝑥 :
HEqℓ (𝐴1, 𝐴2, 𝑥1, 𝑥2) for each 𝑥 :ℓ 𝐴𝑖 ∈ Γ𝑖 . We now come to the
fundamental lemma:

Lemma 4.1 (Fundamental lemma ). Assume 𝑡1 ∼ 𝑡2 and Γ𝑖 ⊢𝔫=
𝑡𝑖 : 𝐴𝑖 for 𝑖 = 1, 2 and that Γ1 and Γ2 are compatible. Then we have
Γ1 ∗ Γ2 ⊢= 𝑒 : HEq𝔫 (𝐴1, 𝐴2, 𝑡1, 𝑡2) for some 𝑒 .

The proof is done by induction on 𝑡1 ∼ 𝑡2, and crucially relies on
various important properties of HEq—in particular its congruence
laws, such as the following one:

HEq-app-cong : HEq (Π(𝑥 : 𝐴1) . 𝐵1,Π(𝑥 : 𝐴2) . 𝐵2, 𝑡1, 𝑡2) →
HEq (𝐴1, 𝐴2, 𝑢1, 𝑢2) → HEq (𝐵1 [𝑥 := 𝑢1], 𝐵2 [𝑥 := 𝑢2], 𝑡1 𝑢1, 𝑡2 𝑢2)

Constructing all these proof-terms and building their typing
derivations explicitly would be simply unfeasible, but thankfully we
can leverage all the support provided by Rocq by working internally
to 𝒯 =

Acc. Concretely, we postulate sufficiently many primitives of
our theory to turn Rocq into a proof assistant for the theory 𝒯 =

Acc.
With the help of user-level features such as implicit arguments
and proof mode, showing the required HEq laws becomes a simple
exercise ( ). These proofs then justify postulating their external
statements ( ).

Decorating translation. With the fundamental lemma in hand, we
now come to the main intermediate result leading to conservativity:
the decorating translation. Its proof in turn requires multiple other
intermediate lemmas, which are already discussed by Winterhalter
et al. [2019] and can be found in our formalization.

Lemma 4.2 (Decorating translation ).
• If Γ ⊢ℓ≡ 𝑡 : 𝐴, then for all Γ′ such that Γ ⊏ Γ′ and ⊢= Γ′, we have
Γ′ ⊢ℓ= 𝑡 ′ : 𝐴′ for some 𝑡 ′, 𝐴′ satisfying 𝑡 ⊏ 𝑡 ′, 𝐴 ⊏ 𝐴′.

• If Γ ⊢𝔫≡ 𝑡 ≡ 𝑢 : 𝐴, then for all Γ′ such that Γ ⊏ Γ′ and ⊢= Γ′,
we have Γ′ ⊢= 𝑒 : Eq𝔫 (𝐴′, 𝑡 ′, 𝑢′) for some 𝑒 , 𝑡 ′, 𝑢′, 𝐴′ satisfying
𝑡 ⊏ 𝑡 ′, 𝑢 ⊏ 𝑢′, 𝐴 ⊏ 𝐴′.

7Recall that 𝒯 =
Acc does not feature dependent sums natively, yet the above one can be

constructed with the impredicative encoding.
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Comparedwith the development ofWinterhalter et al. [2019], the
presence of definitional proof irrelevance in the theory simplifies
a bit the proof, as the above statement does not need to consider
conversions between irrelevant terms (Γ ⊢Ω≡ 𝑡 ≡ 𝑢 : 𝐴).

Conservativity and canonicity. Together, Lemmas 4.1 and 4.2
directly entail conservativity, stating that all 𝒯 =

Acc types inhabited
in 𝒯 ≡

Acc are also inhabited in 𝒯
=
Acc. In particular, all 𝒯

=
Acc propositions

provable in 𝒯 ≡
Acc are hence also provable in 𝒯 =

Acc.

Theorem 4.3 (Conservativity of 𝒯 ≡
Acc over 𝒯 =

Acc ). If ⊢=
𝐴 : 𝒰ℓ and ⊢ℓ≡ 𝑡 : 𝐴 then we have ⊢ℓ= 𝑢 : 𝐴 for some 𝑢.

Combined with the (effective) canonicity result for 𝒯 ≡
Acc (Corol-

lary 3.11), we now derive its propositional version for 𝒯 =
Acc—we skip

here the non-effective statement (Corollary 3.10), which follows
from the following stronger result.

Corollary 4.4 (Propositional canonicity for 𝒯 =
Acc ). If

⊢= 𝑡 : N then, for the unique 𝑛 such that |𝑡 | ⇓ 𝑛, we have ⊢= 𝑒 :
Eq (N, 𝑡, S𝑛 (0)) for some 𝑒 .

5 Set-Theoretic Model
In this section, we build a model for 𝒯 ≡

Acc in set theory, in order
to justify not only its consistency, but also Assumptions A and B
from §3, thereby completing the proof of canonicity. As 𝒯 =

Acc is a
subset of 𝒯 ≡

Acc, this also yields a model for 𝒯 =
Acc. Our construction

is mostly adapted from Pujet et al. [2025]; the main novelty here is
that we formalized the main part of the argument.

Metatheory. Our model construction takes place in ZF set theory
with a countable hierarchy of Grothendieck universes, embedded
in the type theory of Rocq. ( )

Even though ZF is usually presented as a first-order theory,
we allow ourselves to use Rocq’s higher-order logic in order to
simplify the formalization. We argue that it is justified, given that
the use of higher-order logic is consistent with set theory (assuming
one additional inaccessible cardinal) [Obua 2006]. However, we do
not use Rocq’s dependent types, meaning that we are effectively
working in HOL with ZF axioms.

Concretely, we start by postulating a type ZFset as well as a
relation ∈ : ZFset � ZFset � Prop. Then, following Obua [2006], we
postulate the ZF axioms in Skolemized form, so that for each axiom
asserting the existence of a set, we add a new constant and an axiom
describing its behavior. For instance, the empty set axiom becomes:

Parameter ∅ : ZFset.

Axiom ZFempty : ∀ x, x ∈ ∅ � False.

We postulate the Grothendieck universes as an infinite hierarchy
of transitive sets V0 ∈ V1 ∈ V2 ∈ ... which are closed under
the axioms of ZF. We also postulate Russell’s definite description
operator to convert back and forth between higher-order functions
and functional relations.

Constructions in set theory. ( ) From this setup, we perform a
series of constructions that let us use type theory as an internal lan-
guage for our set theory. We start by reproducing the standard con-
struction of cartesian products and function sets, along with their
equations. Next, given A : ZFset and B : ZFset � ZFset, we define

their set-theoretic dependent sum Σ𝐴𝐵 and their set-theoretic de-
pendent product Π𝐴𝐵, and we use the replacement axiom to prove
that Π𝐴𝐵, Σ𝐴𝐵 ∈ V𝑛 whenever 𝐴 ∈ V𝑛 and ∀𝑥 ∈ 𝐴, 𝐵 𝑥 ∈ V𝑛 .
We define 𝜔 as the smallest set containing ∅ and closed under
successor, using the axioms of infinity and comprehension.

The higher-order model. ( ) Thanks to our construction of set-
theoretic dependent products and to set-theoretic equality, we can
use ZF set theory as a logical framework [Harper et al. 1993]. We
now use this logical framework to construct a higher-order model
for 𝒯 ≡

Acc, meaning that we define a family of sets Ω,U0,U1,U2 ...
and show that they support all the rules of our theory (seen as a
second-order generalized algebraic theory (SOGAT) [Kaposi and
Xie 2024]). Because cast computes in 𝒯 ≡

Acc by case analysis on types,
we need to refine the standard set-theoretic universes by means of
codes, along with associated decoding functions Elℓ :

Ω := ⟨𝒫 {∅} ; 0 ; ∅⟩
U𝔫 := ⟨V𝑛 × 𝜔 × V𝔫 ; 1 ; ∅⟩

ElΩ 𝐴 := 𝐴

El𝔫 𝐴 := fst 𝐴

Given 𝐴 ∈ El𝔫+1 U𝔫 , we denote its three components by El𝔫 𝐴,
hd 𝐴 and lbl 𝐴 respectively. The first is the set of inhabitants of 𝐴,
the second is a natural number identifier for the head constructor
of 𝐴, and the third encodes the sets from which 𝐴 has been built
(this will come into play for the injectivity of dependent products).
From these definitions, it should be clear that we have Ω ∈ El0 U0
and U𝔫 ∈ El𝔫+1 U𝔫+1. Furthermore, the inhabitants of Ω are proof-
irrelevant: given 𝐴 ∈ Ω, all of its inhabitants are equal.

Dependent products. ( ) Our higher-order model supports de-
pendent products, which have two separate definitions—one for
the predicative case and one for the impredicative case:

Π̂ℓ,𝔫 𝐴 𝐵 := ⟨Π (Elℓ 𝐴) (𝜆 𝑎 . El𝔫 (𝐵 𝑎)) ; 2 ; ⟨ℓ ; 𝔫;𝐴;𝐵⟩⟩
Π̂ℓ,Ω 𝐴 𝐵 := sub (∀𝑎 ∈ Elℓ 𝐴, isTrue (𝐵 𝑎))

where sub 𝑃 is defined as {𝑥 ∈ {∅} | 𝑃}, and isTrue𝐴 is defined as
∅ ∈ 𝐴. Given two levels ℓ and ℓ′ (which may be either an integer 𝑛
or Ω), one may easily see that if 𝐴 ∈ Uℓ and ∀𝑎 ∈ Elℓ 𝐴, 𝐵 𝑎 ∈ Uℓ ′ ,
then we have Π̂ℓ,ℓ ′ 𝐴 𝐵 ∈ Uℓ∨ℓ ′ . The definitions of 𝜆-abstraction,
application, and the proofs of 𝛽 and 𝜂 are straightforward and found
in the formalization.

Remark that the label of Π̂ℓ,𝔫 𝐴 𝐵 is defined as a tuple containing
ℓ , 𝔫, 𝐴 and the graph of 𝐵. This ensures that whenever two proof-
relevant dependent products are equal, their levels, domains and
codomains are equal, which is important for interpreting rules
Eq-Π1 and Eq-Π2 of our theories.

Set-theoretic accessibility. ( / ) In order to define an accessi-
bility predicate in set theory, we can simply reproduce the standard
impredicative encoding of inductive propositions:
Definition acc (A : ZFset) (R : Rel A) (a : ZFset) : Prop :=
∀ X ∈ 𝒫 A, (∀ b ∈ A, (∀ c ∈ A, R c b � c ∈ X) � b ∈ X)

� a ∈ X.

As a consequence of this definition, one can easily show that an
element of 𝐴 is accessible if and only if all of its predecessors under
𝑅 are accessible. If we want to use this predicate to interpret type-
theoretic accessibility, we also need an eliminator. For this purpose,
assume that we have a set 𝑃 , indexed over 𝐴, and that we have a
set-theoretic function rec that outputs an element of 𝑃 𝑎 given an
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J · K := {∅}
J Γ, 𝑥 :𝔫 𝐴 K := Σ J Γ K (𝛾 ↦→ El𝔫 J Γ ⊢ 𝐴 K𝛾 )
J Γ, 𝑥 :Ω 𝐴 K := Σ J Γ K (𝛾 ↦→ ElΩ J Γ ⊢ 𝐴 K𝛾 )

J Γ ⊢ 𝑥 K𝛾 := 𝛾 (𝑥 )
J Γ ⊢ 𝒰𝔫 K𝛾 := U𝔫

J Γ ⊢ 𝒰Ω K𝛾 := Ω

J Γ ⊢ Π
ℓ,ℓ ′ (𝑥 : 𝐴) . 𝐵 K𝛾 := Π̂ℓ,ℓ ′ J Γ ⊢ 𝐴 K𝛾 (𝑎 ↦→ J Γ, 𝐴 ⊢ 𝐵 K𝛾,𝑎 )

J Γ ⊢ 𝜆𝑥 :𝐴.𝐵
ℓ,𝔫 𝑥. 𝑡 K𝛾 := (𝑎 ∈ Elℓ J Γ ⊢ 𝐴 K𝛾 ) ↦→ (J Γ, 𝐴 ⊢ 𝑡 K𝛾,𝑎 )

J Γ ⊢ 𝑡@𝑥 :𝐴.𝐵
ℓ,𝔫 𝑢 K𝛾 := J Γ ⊢ 𝑡 K𝛾 (J Γ ⊢ 𝑢 K𝛾 )

J Γ ⊢ N K𝛾 := ⟨𝜔 ; 3 ; ∅⟩
J Γ ⊢ 0 K𝛾 := 0

J Γ ⊢ S(𝑛) K𝛾 := 1 + J Γ ⊢ 𝑛 K𝛾
J Γ ⊢ N-elℓ (𝑃, 𝑡0, 𝑡S, 𝑛) K𝛾 := 𝜔_el J Γ ⊢ 𝑃 K𝛾 J Γ ⊢ 𝑡0 K𝛾 J Γ ⊢ 𝑡S K𝛾

J Γ ⊢ Eq (𝐴, 𝑡,𝑢 ) K𝛾 := sub (J Γ ⊢ 𝑡 K𝛾 = J Γ ⊢ 𝑢 K𝛾 )
J Γ ⊢ cast𝔫 (𝐴, 𝐵, 𝑒, 𝑡 ) K𝛾 := J Γ ⊢ 𝑡 K𝛾

J Γ ⊢ Acc𝔫 (𝐴,𝑅, 𝑎) K𝛾 := sub (acc J Γ ⊢ 𝐴 K𝛾 J Γ ⊢ 𝑅 K𝛾 J Γ ⊢ 𝑎 K𝛾 )
J Γ ⊢ acc-el𝔫,ℓ (𝐴,𝑅, 𝑎, 𝑃, 𝑝, 𝑞) K𝛾 :=
acc_el J Γ ⊢ 𝐴 K𝛾 J Γ ⊢ 𝑅 K𝛾 J Γ ⊢ 𝑎 K𝛾 J Γ ⊢ 𝑃 K𝛾 J Γ ⊢ 𝑞 K𝛾

Figure 3: Interpretation of contexts and proof-relevant terms

element of 𝑃 𝑏 for all 𝑏 such that 𝑅 𝑏 𝑎. Then, we define 𝐸 to be the
smallest subset of Σ𝐴𝑃 closed under rec, and we use impredicative
reasoning to show that 𝐸 is the graph of a function. Finally, we use
definite description to turn 𝐸 into a higher-order function, and we
have our set-theoretic eliminator acc_el.We conclude by proving its
computational rule. Using the same methods, we can also construct
an eliminator for the set of natural numbers 𝜔 ( / ).

Observational equality and cast. ( ) The propositional equality
of our theory is interpreted as the set-theoretic equality by defining
eq A t u := sub (𝑡 = 𝑢). This lets us interpret typecasting as
the identity function, which satisfies all the required equations.
Additionally, we obtain function extensionality from the extensional
encoding of functions in set theory. This concludes the definition
of our model.

Interpreting the syntax. Our higher-order model in hand, it re-
mains to interpret the syntax of 𝒯 ≡

Acc in it. The interpretation of
raw syntax and typing judgments of a SOGAT into a higher-order
model is a very administrative task, which has already been treated
in very broad generality by Uemura [2021]. We therefore do not
believe that formalizing it would provide new interesting insights,
and so this part of the argument is only carried out on paper.

The interpretation is defined in Fig. 3 as partial functions from
the syntax to the semantics. We use a function J_K that interprets
contexts as sets and a function JΓ ⊢ _K𝛾 that interprets terms and
types in context Γ as sets indexed by 𝛾 ∈ JΓK. Both functions
are mutually defined by recursion on the raw syntax, and will
eventually be proven to be total functions on well-typed terms.

To prove soundness of our interpretation, we need to extend it to
weakenings and substitutions between contexts. Assume Γ and Δ
are a syntactical contexts, and𝐴 and 𝑡 are syntactical terms. In case
JΓ, 𝑥 : 𝐴 : 𝑠,ΔK and JΓ,ΔK are well-defined, let 𝜋𝐴 be the projection:

𝜋𝐴 : JΓ, 𝑥 : 𝐴 : 𝑠,ΔK → JΓ,ΔK

( ®𝑥Γ, 𝑥𝐴, ®𝑥Δ) ↦→ ( ®𝑥Γ, ®𝑥Δ).

In case JΓ,Δ[𝑥 := 𝑡]K and JΓ, 𝑥 : 𝐴 : 𝑠,ΔK are well-defined, we
define the function 𝜎𝑡 by:

𝜎𝑡 : JΓ,Δ[𝑥 := 𝑡]K → JΓ, 𝑥 : 𝐴 : 𝑠,ΔK

( ®𝑥Γ, ®𝑥Δ) ↦→ ( ®𝑥Γ, J Γ ⊢ 𝑡 K ®𝑥Γ , ®𝑥Δ).

Lemma 5.1 (Weakening). 𝜋𝐴 is the semantic counterpart to the
weakening of 𝐴: for all terms 𝑢, when both sides are well defined, we
have J Γ, 𝑥 : 𝐴 : 𝑠,Δ ⊢ 𝑢 K𝛾 = J Γ,Δ ⊢ 𝑢 K𝜋𝐴 (𝛾 )

Lemma 5.2 (Substitution). 𝜎𝑡 is the semantic counterpart to the
substitution by 𝑡 : for all terms 𝑢, when both sides are well defined, we
have J Γ,Δ[𝑥 := 𝑡] ⊢ 𝑢 [𝑥 := 𝑡] K𝛾 = J Γ, 𝑥 : 𝐴 : 𝑠,Δ ⊢ 𝑢 K𝜎𝑡 (𝛾 )

As a last step before proving soundness of the model, we must
ensure that the axioms of Σ indeed hold in set theory. Formally,
we assume that J⊢ 𝐴K is defined and inhabited for all 𝑐 : 𝐴 ∈ Σ, an
hypothesis satisfied by many important axioms, such as function
extensionality, excluded middle and various forms of choice.

Theorem 5.3 (Soundness of the Standard Model).
(1) If ⊢ Γ then JΓK is defined.
(2) If Γ ⊢ 𝐴 : 𝒰Ω then J Γ ⊢ 𝐴 K𝛾 ∈ El0 Ω for all 𝛾 ∈ JΓK.
(3) If Γ ⊢ 𝐴 : 𝒰𝔫 then J Γ ⊢ 𝐴 K𝛾 ∈ El𝔫+1 U𝔫 for all 𝛾 ∈ JΓK.
(4) If Γ ⊢Ω 𝑡 : 𝐴 then ∅ ∈ ElΩ J Γ ⊢ 𝐴 K𝛾 for all 𝛾 ∈ JΓK.
(5) If Γ ⊢𝔫 𝑡 : 𝐴 then J Γ ⊢ 𝑡 K𝛾 ∈ El𝔫 (J Γ ⊢ 𝐴 K𝛾 ) for all

𝛾 ∈ JΓK.
(6) If Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 then J Γ ⊢ 𝑡 K𝛾 = J Γ ⊢ 𝑢 K𝛾 for all 𝛾 ∈ JΓK.

Proof. By induction on the typing derivations, using Lemmas 5.1
and 5.2. □

Consequences. As the false proposition is interpreted as the empty
set, we get that our theories are consistent.

Theorem 5.4 (Consistency). The type⊥, defined asΠ(𝑋 : 𝒰Ω) .𝑋 ,
is not inhabited in 𝒯 =

Acc or 𝒯
≡
Acc in the empty context.

We now focus on proving the assumptions needed for the canon-
icity proof. Since we equipped every relevant type former with
a unique identifier, we get that one cannot prove an equality be-
tween two relevant types with different heads in the empty context
(Assumption A).

To prove Assumption B, we need the following easy lemma.
Recall that a relation morphism from 𝑅1 to 𝑅2 is a function 𝜙 such
that 𝑅1 (𝑥,𝑦) implies 𝑅2 (𝜙 (𝑥), 𝜙 (𝑦)).

Lemma 5.5 (Morphisms reflect accessibility). If𝜙 is a relation
morphism from 𝑅1 to 𝑅2 and 𝜙 (𝑎) is well founded for 𝑅2 then 𝑎 is
well founded for 𝑅1.

Now, assuming ⊢ 𝑒 : Acc𝔫 (𝐴, 𝑥𝑦.𝑅, 𝑎), Theorem 5.3 yields a proof
of JAcc𝔫 (𝐴, 𝑥𝑦.𝑅, 𝑎)K, meaning that the element J𝑎K is well founded
for the binary relation J𝑅K over J𝐴K. Theorem 5.3 implies also that
J−K is a relation morphism from 𝑅 to J𝑅K, thus we conclude that 𝑎
is well founded for 𝑅 (Assumption B).

6 Accessibility in SProp in Action
We base our implementation on the work of Pujet et al. [2025],
which implements CICobs using the rewrite rule mechanism intro-
duced in Rocq [Cockx et al. 2021; Leray et al. 2024]. This makes
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it possible to postulate the cast operation (where ∼ is the nota-
tion for observational equality) together with its reduction rules
implementing the conversion rules such as Cast-Π (not shown):

Symbol cast : ∀ (A B : Type), A ∼ B � A � B.

Defining Acc in SProp. The accessibility predicate can be defined
in Rocq as the following inductive predicate in SProp:

Inductive Acc A (R: A � A � SProp) (x:A) : SProp :=

| acc_in : (∀ y : A, R y x � Acc A R y) � Acc A R x.

However, only the eliminator for predicates in SProp is generated by
default, so we postulate a new symbol acc_el (i.e., a new constant)
corresponding to rule Acc-el:

Symbol acc_el : ∀ A R a (P : ∀ x : A, Type),

(∀ a, (∀ b : A, R b a � P b) � P a) �
∀ (q : Acc R a), P a.

Supporting 𝒯 =
Acc and 𝒯

≡
Acc. It remains to implement the two com-

putation rules for acc_el, the propositional one and the definitional
one for 𝒯 ≡

Acc. The propositional is simply stated as an axiom:

Axiom Acc_el_comp : ∀ A R a P p q,

acc_el A R a P p q ∼
p a (fun b r => acc_el A R b P p (acc_inv A R a q b r)).

For the other, we define a rewrite rule corresponding to an oriented
version of Acc-el-def (‘?’ is used to introduce patterns, correspond-
ing to variables bound by the left-hand side of the rewrite rule):

#[local] Rewrite Rule Acc_el_def :=

| acc_el ?A ?R ?a ?P ?p ?q =>

?p ?a (fun b r =>

acc_el ?A ?R b ?P ?p (acc_inv ?A ?R ?a ?q b r)).

The term acc_inv used above corresponds to rule Acc-inv.
Note that we have introduced in Rocq (in a modified v9.2) a way

to localize the use of a rewrite rule, using the pragma #[local]. This
flag specifies that the rewrite rule is disabled by default, and must be
explicitly enabled locally with the #[rewrite_rules(Acc_el_def)]

pragma when one wants to work in the theory 𝒯 ≡
Acc.

Well-founded recursion done right—and fast. To test our hypothe-
sis that having a definitional computation rule for acc_el is crucial
in some cases, we define the gcd (greatest common divisor) function,
following the running example of Leroy [2024].

We do not recall the concrete implementation of gcd, which can
be found in the Rocq formalization. Here, what matters is the ability
to prove simple helpful lemmas such as:

Lemma gcd_test : (gcd (2 ^ N) 2 <? 5) ∼ true.

for some given number N. Indeed, when doing proofs in computa-
tional algebra for instance, it is not rare to have to prove concrete
bounds on functions applied to specific values in order to be able to
apply a lemma. This is the case for instance when approximating
definite integrals, as explained by Mahboubi et al. [2019].

We test the performance of the proofs in three different scenarios,
when N varies:

(1) by evaluating the normalization proof of gcd in Prop as it can
be done in standard CIC,

N Proof normalization Rewriting Conversion
in Prop in 𝒯 =

Acc in 𝒯 ≡
Acc

5 < 0.001 sec 0.085 sec < 0.001 sec
6 < 0.001 sec 0.38 sec < 0.001 sec
7 < 0.001 sec 2.638 sec < 0.001 sec
8 0.001 sec 21.468 sec 0.001 sec
9 0.002 sec 203.198 sec 0.002 sec
10 0.004 sec ✗ 0.004 sec

Table 1: Performance comparison of three approaches to
prove the lemma gcd_test for some values of N. (✗ indicates a
10-min timeout)

(2) by (automated) rewriting with the propositional equality
Acc_el_prop in 𝒯 =

Acc, similar to using the simp tactic in Lean,
(3) by evaluating acc_el directly in 𝒯 ≡

Acc.
Working directly in 𝒯 =

Acc, the proof is performed as:

Lemma gcd_test : (gcd (2 ^ N) 2 <? 5) ∼ true.

Proof.

auto_Acc_unfold; reflexivity.

Qed.

The tactic auto_Acc_unfold performs rewrites with the proposi-
tional equality Acc_el_prop until it is no longer applicable.

Using the conservativity result (Theorem 4.3), the proof can be
performed by locally moving to 𝒯 ≡

Acc, and exploit conversion:

#[rewrite_rules(Acc_el_def)]

Lemma gcd_test_def (gcd (2 ^ N) 2 <? 5) ∼ true.

Proof.

reflexivity.

Qed.

The results shown in Table 1 illustrate the performance benefits
of being able to compute with acc_el in SProp or Prop. The results
were obtained on a MacBook Pro 14-in (M2 Pro, 32GB RAM), taking
the average of 10 runs.

The most salient result of this small experiment is that automatic
rewriting with the Acc_el_prop lemma in 𝒯 =

Acc performs poorly
compared to the other two approaches, and degrades very quickly—
reaching a 10-min timeout for 𝑁 = 10. Note that for a given 𝑁 ,
2𝑁−1 + 1 rewrites are performed. The fact that computation time
grows much faster than the number of rewritings to perform is due
to the exponential growth in the size of the generated proof terms.
The drastic performance difference between automatic rewriting
in 𝒯 =

Acc and relying on conversion in 𝒯 ≡
Acc comes from the fact that,

with conversion, the proof is always just refl, independently of
the number of reduction steps to be performed.

The apparent efficiency of evaluating the termination proof in
Prop—which here is comparable to direct computation in SProp—is
in fact misleading, as it depends on the size of the proof of accessibil-
ity passed on to the eliminator. Indeed, recall that the computation
rule for accessibility in Prop requires the proof term to be first re-
duced to acc_in. For gcd this proof is rather small but, as we show
next with a System F evaluator, this approach does not scale at all
when the termination argument is larger and more intricate.

Perils of reduction. We now explain what happens when trying
to prove the above lemma generically for all 𝑛, highlighting the
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interest of considering both 𝒯 =
Acc and 𝒯 ≡

Acc in concert. When work-
ing inside 𝒯 ≡

Acc, fully evaluating the gcd (using the lazy tactic) does
not terminate; indeed, the canonicity theorem (Corollary 3.10) only
holds on closed terms, and thus does not apply when 𝑛 is a variable.
#[rewrite_rules(Acc_el_def)]

Lemma gcd_test_gen : ∀ n, (gcd (2 ^ n) 2 <? 5) ∼ true.

Proof.

Fail Timeout 2 lazy; reflexivity.

Abort.

Note that non-termination can be avoided by only reducing to
weak head normal form with tactics such as simpl or hnf. But con-
trolling reduction is fragile in proof assistants. As mentioned in
§1, this is the reason why in Lean, when acc_el is set to compute,
subtle changes in heuristics to control unfolding can unexpect-
edly break proofs. In that case, the better approach is to show this
property in 𝒯 =

Acc, using rewriting during reasoning.

Normalization of System F. To illustrate the practical benefits of
the proposed approach to reconcile definitional proof irrelevance
and accessibility in presence of impredicativity, we now consider the
stereotypical case of an evaluator of System F. We first explain how
the evaluator can be obtained from the proof of normalization of
System F, and then quickly report on the performance comparison
of different approaches to compute with this evaluator.

Note that compared to the gcd example above, the semantic
termination argument of System F is rather involved. Also, an eval-
uator for System F cannot be defined in CICobs without accessibility
defined in SProp, as normalization of System F fundamentally relies
on impredicativity and the presence of an accessibility predicate.

For a term t of System F, being normalizing is encoded by the
fact that anti-reduction is accessible at t:
Definition Normalizing (t : Term) : SProp :=

Acc (fun t' t => t ⇝ t') t.

where t ⇝ t' denotes that t 𝛽-reduces to t' in exactly one step.
Put differently, all 𝛽-reduction chains starting from t are finite.

The main part of the proof from Reynolds and Girard [1972],
using reducibility candidates, is to show that any well-typed term
of System F is actually normalizing.
Lemma termf_norm : ∀ ctx t ty,

ctx ⊢ t :: ty � Normalizing t.

To prove this result in Rocq, in SProp, we adapted the development
of Blot [2022], which was carried out in Prop. From this proof of
normalization, it is possible to derive an evaluator nf for System F
by first showing that being in normal form is a decidable property.
Definition nf : ∀ ctx t ty, ctx ⊢ t :: ty � Term.

Having derived the evaluator from the normalization proof, we
look again at the three different approaches to compute with it, via
the simple example of proving 2𝑛+1 = 2𝑛 + 2𝑛 with concrete values
of 𝑛. Recall that in System F, the type of Church numerals can be
defined as ∀𝑋,𝑋 → (𝑋 → 𝑋 ) → 𝑋 , thanks to impredicativity,
therefore requiring the use of an impredicative universe.

The results are given in Table 2. They confirm that using auto-
matic rewrite of the propositional computation rule is slow and
does not scale. Notably, while the proof normalization in Prop ap-
peared reasonable in the gcd example, here we see the impact of

n Proof normalization Rewriting Computation
in Prop in 𝒯 =

Acc in 𝒯 ≡
Acc

2 38 sec 12.2 sec 0.002 sec
3 ✗ 35.4 sec 0.005 sec
4 ✗ 147 sec 0.015 sec
9 ✗ ✗ 14.3 sec

Table 2: Performance comparison of three approaches to
prove 2𝑛+1 = 2𝑛 + 2𝑛 for some values of 𝑛, with the System F
evaluator. (✗ indicates a 30-min timeout)

an involved termination argument: with 𝑛 = 2 the approach is
already 3x slower than rewriting in 𝒯 =

Acc, and reaches a 30-min
timeout with just 𝑛 = 3. On the contrary, direct computation in
𝒯 ≡
Acc performs orders of magnitude better, and scales adequately,

achieving practical performance even for 𝑛 = 9 and beyond.

7 Conclusion, Related and Future Work
We have presented a dual approach to reconciling definitional proof
irrelevance with accessibility predicates, with an ambient decidable
theory 𝒯 =

Acc that only features a propositional computation rule
for accessibility elimination, and a more flexible theory 𝒯 ≡

Acc that
supports a definitional computation rule at the expense of potential
divergence. Crucially, we prove the theory 𝒯 ≡

Acc to be conservative
over 𝒯 =

Acc, ensuring that it can be used to simplify the writing of
proofs in the latter. The two theories are consistent and satisfy
canonicity properties. We have briefly discussed and illustrated an
implementation in the Rocq prover, based on local rewrite rules.

We have already discussed the most salient related work that
gives rise to this work in the introduction (§1), in particular the ten-
sion between definitional proof irrelevance and accessibility [Gilbert
et al. 2019]. The study of general recursion in constructive type the-
ory via well-founded relations dates back to Paulson [1986], with
the introduction of the accessibility predicate technique later by
Bove and Capretta [2005], which is nowadays the standard approach
for well-founded definitions in type theory-based proof assistants.

The metatheory of definitional proof irrelevance was studied
in the setting of intentional Martin-Löf Type Theory initially by
Werner [2008], even if this principle was already used as justifica-
tion for other systems [Altenkirch 1999b; Barthe 1998]. However,
the work of Werner mentions a wrong conjecture on the behavior
of propositional equality in this context, which has recently been
clarified by Abel and Coquand [2020]. This illustrates the difficulty
of mixing definitional proof irrelevance with logical principles on
the metatheoretic level. Further metatheoretic study of definitional
proof irrelevance came later with the work of Abel et al. [2011],
Gilbert et al. [2019] and Coquand [2023]. Pujet and Tabareau [2022]
subsequently extended the work of Gilbert et al. [2019] by also con-
sidering observational equality, originally proposed by Altenkirch
et al. [2007]. Their work was extended to account for impredicativ-
ity [Pujet and Tabareau 2023] and indexed inductive types [Pujet
et al. 2025].

Finally, the work on extraction of Letouzey [2004], recently for-
malized by Forster et al. [2024], can be seen as an external version
of our approach. Indeed, after the erasure of proofs, the eliminator
for accessibility computes exactly as specified by rule Acc-el-def,
ignoring the accessibility witness. However, our canonicity result is
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stronger as it also holds in presence of consistent axioms in SProp,
in particular the use of classical principles. One promising line of
work is to study whether our proof technique can be used to derive
a similar result for extraction, therefore drawing a line of which
kind of axioms can be used safely in a formalization while ensuring
the good computational properties of the extracted code.
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