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The metatheory of dependent types has seen a lot of progress in recent years. In particular, the development

of categorical gluing finally lets us work with semantic presentations of type theory (such as categories with

families) to establish fundamental properties of type theory such as canonicity and normalisation. However,

proofs by gluing have yet to reach the stage of computer formalisation: formal proofs for the metatheory of

dependent types are still stuck in the age of tedious syntactic proofs. The main reason for this is that semantic

presentations of type theory are defined using sophisticated indexed inductive types, which are especially

prone to “transport hell”. In this paper, we introduce a new technique to work with CwFs in intensional type

theory without getting stuck in transport hell. More specifically, we construct an alternative presentation of

the initial CwF which encodes the substitutions as metatheoretical functions. This has the effect of strictifying

all the equations that are involved in the substitution calculus, which greatly reduces the need for transports.

As an application, we use our strictified initial CwF to give a short and elegant proof of canonicity for a type

theory with dependent products and booleans with large elimination. The resulting proof is fully formalised

in Agda.
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1 INTRODUCTION
What is a dependent type theory? There is no single, universally accepted answer to this question.

Dependent type theories can be described in a number of ways, ranging from the most syntactic to

the most semantic:

ac
tu
al
im
p
le
m
en
ta
ti
o
n
s

ex
tr
in
si
c
sy
n
ta
x

in
tr
in
si
c
u
n
q
u
o
ti
en
te
d
A
S
T
s

C
w
F

n
at
u
ra
l
m
o
d
el
s

co
m
p
re
h
en
si
o
n
ca
te
g
o
ri
es

L
C
C
C

“syntactic” “semantic”

Authors’ addresses: Ambrus Kaposi, akaposi@inf.elte.hu, Eötvös Loránd University, Budapest, Hungary; Loïc Pujet,

Stockholm University, Stockholm, France, loic@pujet.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: February 2018.

HTTPS://ORCID.ORG/???
HTTPS://ORCID.ORG/???
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/???
https://orcid.org/???
https://doi.org/XXXXXXX.XXXXXXX


2 Ambrus Kaposi and Loïc Pujet

The most syntactic definitions appear in actual implementations [Moura et al. 2015; Agda; Coq]

where terms are untyped syntax trees and there is no typing relation, just an (efficient) algorithm for

typechecking in some inconsistent metalanguage. A first step towards a more semantic definition

is extrinsic syntax, where we work in a consistent metalanguage such as Coq [Adjedj et al. 2024] or

Agda [Abel et al. 2017] and use typing relations to carve the meaningful terms out of the untyped

ASTs. Intrinsic syntax goes yet a bit further by removing meaningless terms (the ASTs are indexed

by their types), but it still requires a separate relation to describe conversion [Chapman 2009;

Danielsson 2006]. In the category with families (CwF) approach [Altenkirch and Kaposi 2016b;

Castellan et al. 2021; Dybjer 1996], type theory is described by an algebraic theory, and conversion

coincides with the metatheoretic equality. In other words, we work with intrinsic terms quotiented

by conversion. Awodey’s natural models [Awodey 2018] replace the type-indexing of terms with a

map from terms to types; comprehension categories [Jacobs 1993] replace the family of types with

a category of types and a fibration explaining the connection between contexts and types, while

simultaneously weakening substitution so that it is functorial only up to isomorphism; and finally

LCCCs [Clairambault and Dybjer 2014; Seely 1984] use slice categories to model types and terms

as local objects/morphisms, and they build in extensional identity types.

Moving towards the left on the axis gives more practical implementations and observable

computations, while moving towards the right gives elegance, abstraction, and easier metatheoretic

proofs. Moving towards the left also involves more ad-hoc choices: for example, one has to decide

whether to use lambda abstractions à la Curry or à la Church, or whether the typing rules should

be paranoid or economic [Winterhalter 2020, Section 9.2]. Conversely, moving towards the right

forces some choices: for example, all notions right of intrinsic unquotiented ASTs use De Bruijn-like

combinators instead of named variables, and instantiation (substitution of variables by terms) is

not a recursively defined operation, but one of the constructors in the syntax. Going all the way

to the far right, it even becomes difficult to see how the semantic constructions relate to actual

types/terms. Overall, CwFs occupy a sweet spot where the terms are similar to actual syntax, but

there is already a usable notion of model.

1.1 Normalisation and Gluing
Until recently, some properties of dependent type theory were believed to be essentially syntactic,

in the sense that it was not clear whether they can be proven while staying on the semantic

side of the axis. One such example is normalisation. Normalisation traditionally means that any

well-typed term can be reduced to a deep normal form, i.e., a term which does not contain any

redex. This property plays an important role when implementing a type checker for type theory, as

the usual algorithm for type checking performs type comparisons by normalising both types and

then checking syntactic equality of their normal forms. In semantic notions of type theory such as

CwFs, there is no notion of reduction, but it is nevertheless possible to talk about reduction-free

normalisation: we can define normal forms inductively (along with a map from normal forms to

terms), and then normalisation states that the map from normal forms to terms has a section –

which does imply decidability of equality for quotiented terms. For simple type theory and System

F, there are normalisation proofs on the CwF level of abstraction that go back to the 90s [Altenkirch,

Hofmann, et al. 1995, 1996], but until recently it was not clear how to scale this technology to

dependent types with a universe. Indeed, normalisation is usually proven via some version of Tait’s

reducibility method, and the traditional definition of reducibility predicates for the universe relies

on reduction [Abel 2013]. The breakthrough came when it was realised that the logical relation can

be made proof-relevant [Altenkirch and Kaposi 2016a; Shulman 2015], which echoes a standard

categorical technique called gluing [Kaposi, Huber, et al. 2019].
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Type Theory in Type Theory Using a Strictified Syntax 3

Today, gluing-style normalisation proofs have been adapted to a wide range of type theories

[Altenkirch, Kaposi, and Kovács 2017; Coquand 2019; Gratzer 2022; Sterling and Angiuli 2021], but

interestingly enough, they have yet to reach the stage of computer formalisation. Most formalisation

efforts still take place on the syntactic and extrinsic side, e.g.most recently for Lean [Carneiro 2024].
The resulting normalisation proofs are beasts of tens of thousands of lines of code, contrasting with

the elegance of gluing-style proofs which fit on a single page. So why not use gluing in computer

formalisation? The answer lies in the fine print: informal gluing proofs fit on a single page, but in

practice, formalising normalisation using an intrinsic and quotiented syntax is even more difficult

than with extrinsic syntax. We identify three reasons for this:

(i) Since the syntax is defined as intrinsically well-typed ASTs quotiented by conversion, one

needs a metalanguage which supports quotients (quotient inductive-inductive types, QIITs

[Kaposi, Kovács, and Altenkirch 2019] to be precise). In contrast, extrinsic syntax can be

implemented in plain Martin-Löf type theory with inductive types.

(ii) Intrinsic representations are especially prone to “transport hell”. An analogy: whenever

we work with vectors indexed by their length, we end up needing transports to adjust the

indices – for instance, the statement of associativity of vector concatenation depends on the

associativity of addition, which appears as a transport on one of the vectors. Subsequently,

we need to invoke general properties of transport (e.g. that it commutes with function

application) every time we manipulate proofs involving transport. This can get out of hand,

and turn most of the code into uninteresting reasoning about transports. In fact, it is generally

advised to avoid vectors, and instead to work with non-indexed lists and separate proofs

about their length. For the same reasons, it is advised to work with non-indexed terms and

to use separate proofs of typing.

(iii) Another handicap for intrinsic syntax is the fact that substitution laws such as (app 𝑡 𝑢) [𝛾] =
app (𝑡 [𝛾]) (𝑢 [𝛾]) are weak: these come from equality constructors in the QIIT of syntax,

and as such, they are propositional equalities. Compare this with extrinsic syntax, where

substitution is defined by recursion on terms, and such equations hold definitionally. If an
equality is definitional, there is no need to transport over it. Combined with indexing, this

makes formalising gluing-style normalisation proofs very difficult. For example, even for

simple type theory (where there is no type-indexing at all), if all the equations in the syntax

are definitional (the syntax is fully strict), the canonicity proof takes 44 lines of Agda code, if

all equations are weak, it takes 190 lines of code [Kaposi 2023]. The difference comes from

uninteresting boilerplate of transport-reasoning.

1.2 Strictifying the Syntax of Type Theory
If we want to bring the elegance and simplicity of gluing arguments to the world of formalised

proofs, we need to find a way around these three issues. Issue (i) is the simplest one, as it can be

solved simply by moving to a metalanguage with support for QIITs. Cubical Agda [Vezzosi et al.

2021] is a good candidate, but it is a bit of an overkill, because we usually don’t need univalence

and h-sets are enough when working with the syntax. A more suitable language is observational

type theory (OTT, [Altenkirch, McBride, et al. 2007; Pujet and Tabareau 2022]) which supports

quotients and has a definitionally proof-irrelevant equality type. There is an experimental OTT

extension for Coq [Pujet, Leray, et al. 2025] but OTT can more generally be implemented in any

proof assistant which supports rewrite rules [Cockx et al. 2021; Leray et al. 2024].

Issues (ii) and (iii) are more interesting, and they are the main focus of this paper. Our contribution

is a method to transform all the substitution laws of an intrinsic, quotiented, CwF-based syntax to

definitional equations. This eliminates the greatest drawback of intrinsic syntaxes over extrinsic
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4 Ambrus Kaposi and Loïc Pujet

presentations. In fact, our tool makes not only the substitution laws definitional, but also almost

all equations of the substitution calculus (the CwF equations). For example, the functor law 𝑡 [𝛾 ◦
𝛿] = 𝑡 [𝛾] [𝛿] is also definitional, in contrast with extrinsic syntaxes where it is usually weak. We

demonstrate our technique on the syntax of a type theory with Π types and booleans with large

elimination, and we conjecture that it works in general for any type theory. More precisely, we

expect that for any second-order generalised algebraic theory (SOGAT, [Kaposi and S. Xie 2024]),

there is a first-order model equivalent to the syntax, which has a strict substitution calculus. As

all non-substructural languages with binders can be described as SOGATs, we expect that our

technique works very generically. The only CwF equation which is weak in our strictified syntax is

the 𝜂 law for substitutions saying that any substitution into an extended context is the same as a

substitution into the smaller context together with a term.

An analogy for our construction is difference lists, which are available in the Haskell Prelude:

concatenation of lists is only provably associative, but concatenation of difference lists is definition-

ally associative. A difference list is a List → List function which prepends a list to its input (i.e., 𝑥𝑠
is represented by 𝜆𝑦𝑠. 𝑥𝑠 ++ 𝑦𝑠), and concatenation of difference lists is just function composition,

which is definitionally associative. More abstractly, difference lists can be seen an instance of the

Yoneda embedding, which may be used to strictify the equations for composition in an arbitrary

category: given a category𝐶 , we can replace morphisms C(𝐽 , 𝐼 ) by natural transformations between

the presheaves y 𝐽 and y 𝐼 where y 𝐼 𝐾 := C(𝐾, 𝐼 ). Composition of these natural transformations is

strictly associative and unital, and by the Yoneda lemma, C(𝐽 , 𝐼 ) � (y 𝐽 .→ y 𝐼 ), hence the strictified
category is equivalent to the original one. The technique that we present in this paper roughly

provides an extension of this “Yoneda strictification” operation to categories with families.

Another useful point of view comes from the semantics of higher-order abstract syntax (HOAS

[Hofmann 1999]), and relatedly the semantics of logical frameworks [Harper et al. 1993] and two-

level type theory [Annenkov et al. 2023]. Presheaves over a category are a model of type theory

[Hofmann 1997]. If the base category happens to be a CwF, then in addition to the usual universe

of presheaves (written internally to the presheaf model as Set), we have another universe Ty : Set,
Tm : Ty → Set which is defined using the types and terms of the base category. Furthermore, if

the base CwF also supports Π types, then this universe is closed under dependent function space –

that is, there is a Π : (𝐴 : Ty) → (Tm𝐴 → Ty) → Ty in the presheaf internal language along with

lambda-abstraction and application combinators. The situation is similar for other type and term

formers. Note that Π is a binder, and the extra variable in the second argument is modelled by the

function space of the presheaf model (which acts as the metatheory, as we work internally). Thus

the “substitution calculus” in this setting is implemented by the metatheoretic function space. And

in type-theoretic metatheories, the function space has nice properties, e.g. function composition is

definitionally associative. Wemake use of this: after internalising the syntax in the internal language

of presheaves over the syntax, we externalise the universe Ty, Tm. This process replaces the weak

substitution calculus (which causes problem (iii) above) by one which comes from constructions in

the presheaf model. If our presheaf model is strict, the externalised CwF will also be strict.

In summary, our construction takes as input a weak model of type theory, and then using

this internalisation–externalisation construction, we obtain another isomorphic model where

(almost) all the CwF equations are strict. Note that we do not strictify equations outside of the

substitution calculus, such as the 𝛽/𝜂 laws for Π types. The result is a model that combines the

strengths of syntactic models with the strengths of semantic models. Our model enjoys definitional

substitution laws and minimal transport hell just like extrinsic syntax, but it supports the same

induction principle as the initial object in the category of CwFs. We demonstrate the efficiency of

our technique by implementing a canonicity proof for our object type theory which is as concise

as the one-page gluing proof from Kaposi, Huber, et al. [2019, page 11].
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1.3 Structure of the paper
After describing related work and our metatheory, we introduce the intrinsic syntax of type theory

using CwFs in Section 2. We also illustrate the difficulties that arise when working with intrinsic

syntax in an intensional type theory. The heart of the paper is Section 4, in which we unfold our

strictification construction in an abstract setting. This construction is parameterised by a strict

model of type theory, and uses it to define a substitution-strict model isomorphic to the syntax.

Section 3 serves as a warm up for Section 4, where we attempt to do the strictification construction

using presheaves, but find that regular presheaves are missing some definitional equations. The

strictification is finally completed in Section 5, where we instantiating the requirements of Section

4 with a stricter notion of presheaves called prefascist sets. We use our strictified syntax to prove

canonicity in Section 6, and we conclude in Section 7.

1.4 Related work
A simpler way to strictify all equations in a CwF-based syntax is shallow embedding [Kaposi,

Kovács, and Kraus 2019]. This technique produces a model of type theory which is fully strict,

and it can be shown externally to the metatheory that this model is equivalent to the syntax.

However, we cannot see this internally, as there is no induction principle for this model. Thus it

can be used to typecheck the canonicity proof, but we cannot use it for computation. Another

strictification method follows the extrinsic approach directly and replaces substitution in the syntax

by a recursively defined substitution [Kaposi 2023]. For dependent types, it is not clear how to do

this at the same time as defining the syntax, but it can be done as a second step. The technique

has been implemented for simple types, but as far as we know, not for dependent types. We also

strictify more equations, e.g. the functor laws for substitutions.

A more generic way of strictifying propositional equalities is to use equality reflection (i.e.,
extensional type theory), which turns propositional equalities into definitional ones, thereby

removing the need for transports. There are several options to use equality reflection, besides

working within an actual implementation of extensional type theory such as NuPRL [Constable

et al. 1985]. For instance, it is possible to circumscribe a useful subsystem of extensional type

theory with equality reflection for erasable types [Winterhalter 2024]; one can also use rewrite

rules to turn selected equations definitional [Cockx et al. 2021], or one can attempt to translate

constructions written in extensional type theory into intensional type theory [Hofmann 1995; Oury

2005; Winterhalter et al. 2019]. Unlike these approaches, our work stays in intensional type theory

(more specifically its observational variant).

Synthetic Tait computability [Sterling 2021] and internal sconing [Bocquet et al. 2023] are

techniques to prove properties of the syntax of type theory (such as canonicity) in the internal

language of glued toposes/presheaves. As they abstract over the particular presentation of the

substitution calculus, they don’t face the strictness issues that external descriptions have. However

an externalisation step is needed to use them as implementations, and this has not been developed

yet. Our approach is external and its computational content is clear, e.g. it could be used in an

implementation of a typechecker. Our strict substitution calculus removes transport hell, and when

comparing to the internal approaches, the only inconvenience that remains is that variables are

handled by De Bruijn indices and weakenings are explicit. Our strictification construction is roughly

the following three steps of the internal sconing approach merged together: internalisation →
telescopic contextualisation → externalisation.

Intrinsic formalisations of type theory end up in transport hell [Altenkirch and Kaposi 2016b] or

remove term-indexing and thus are further away from the syntax such as [Brunerie and Boer 2020]

which used comprehension categories instead of CwFs.
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6 Ambrus Kaposi and Loïc Pujet

In this paper by strictification we mean the replacement of propositional equalities by definitional

equalities. Another meaning of the same word is the replacement of isomorphisms by propositional

equalities: this happens when we have a semantic notion of model where substitution is functorial

only up to isomorphism, and we want to make it definitional. Bocquet [Bocquet 2021] categorises

these constructions into right adjoint splitting [Curien et al. 2014; Hofmann 1994] and left adjoint

splitting (the local universe method) [Lumsdaine and Warren 2015]. While the purpose of these

methods is different from ours, there are two connections: local universes can be also used to

obtain more definitional equalities in formalisation, that is, strictify a model in our sense (see e.g.

the formalisation of [Donkó and Kaposi 2021]); right adjoint splitting is related to the notion of

prefascist set, which is defined as a subpresheaf of the right Kan extension applied to a presheaf on

a discrete category [Pujet 2022, Section 6.3.2].

1.5 Metatheory and formalisation
As the main focus this paper is strictification, a significant part of our exposition will involve

considerations about the definitional equality of our metatheory. Therefore, we need to deal with

three levels of abstraction: the object theory which is modelled by its initial CwF, the metatheory

in which we formalise our definitions, and the meta-metatheory that we use to reason about the

definitional equation of the metatheory. In order to keep track of this hierarchy, we work in a two-

level type theory. The inner layer is an observational type theory; this is where our formalisation

of the initial CwF and our constructions of gluing models happen. The outer layer is an extensional

type theory; we use it to reason about the definitional equality of the inner layer.

We denote the outer universe by Set, and we write ≡ for the equality in the outer layer. This

equality validates the reflection rule of extensional type theory, thus it is really the same as the

definitional equality of our theory. We denote the inner universe by U : Set, and we equip it with

an implicit coercion U → Set (where we omit universe levels for the sake of readability). This inner

universe is a model of OTT, and as such it contains a subuniverse of strict propositions Prop : U
(here, strict means that if 𝐴 : Prop, then for any 𝑎, 𝑎′ : 𝐴, we have 𝑎 ≡ 𝑎′). Every type 𝐴 in U is

equipped with an observational equality relation, which we write as – =𝐴 – : 𝐴 → 𝐴 → Prop. We

write its constructor as refl and transport as 𝑒∗ 𝑢 : 𝑃 𝑏 for 𝑒 : 𝑎 = 𝑏 and 𝑢 : 𝑃 𝑎, with refl∗ 𝑢 ≡ 𝑢. This
inner equality is also called weak equality, while the outer equality is called strict equality. Both
equality types enjoy the definitional uniqueness of identity proofs (UIP). In particular, UIP implies

that the J eliminator can be derived from the primitive transport operator. When using either

transport or the J eliminator we don’t write the family, we don’t write congruences (ap or cong
operations) and we also don’t write symmetries in equality proofs. For example, given 𝑝 : 𝑏 = 𝑎

and 𝑞 : 𝑓 𝑏 = 𝑐 , we write 𝑝 · 𝑞 : 𝑓 𝑎 = 𝑐 where · stands for transitivity. We denote the relation

between transport and transitivity by ·∗ : (𝑒 · 𝑒′)∗ 𝑢 = 𝑒′∗ (𝑒∗ 𝑢) which is proven by J on 𝑒 . We write

(𝑎 : 𝐴) → 𝐵 𝑎 for Π types, (𝑎 : 𝐴) × 𝐵 𝑎 for Σ types and ⊤ for the unit type with constructor tt. All
of these have definitional 𝛽, 𝜂 rules. Note that we do not distinguish between the inner Π/Σ types

and their outer counterparts, given that they are definitionally isomorphic. We use record types

(named iterated Σ types) where projections take the record as a subscript argument, e.g. Con𝑀 : U
is the context component of an𝑀 : CwF. The notation 𝑓 : 𝑋 � 𝑌 : 𝑓 −1 stands for isomorphism in

a category where both maps have names. Most of the time this is the category of sets (𝑋,𝑌 : Set)
and it means 𝑓 : 𝑋 → 𝑌 with 𝑓 −1 : 𝑌 → 𝑋 with 𝑓 −1 (𝑓 𝑥) = 𝑥 and 𝑓 (𝑓 −1 𝑦) = 𝑦 for all 𝑥 , 𝑦.

Sections 5 and 6 were formalised in Agda (this includes the instantiation of Section 4 to prefascist

sets). Although Agda does not support OTT natively, it is not too difficult to implement it by taking

advantage of the Prop hierarchy and the mechanism for defining custom rewrite rules. We define

the observational equality as an inductive equality valued in Prop, and we postulate a type coercion
operator coe : (𝐴 =U 𝐵) → 𝐴 → 𝐵 along with all its reduction rules, following the blueprint in
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[Pujet, Leray, et al. 2025]. We also extend Agda with quotient inductive-inductive types (QIITs),

by postulating all their constructors, as well as the induction principle and its reduction rules. We

use the technique of fordism to handle indices. The resulting theory remains fully computational

and normalising, which should let us extract executable programs from our gluing proofs. The

formalisation is available at [URL removed for reviewing. See anonymised supplementary material],

and links to the code will be scattered throughout the paper. Note that there are minor differences

between the formal proofs and our presentation – for instance, we found that using a heterogeneous

(“John Major”) formulation of equality helps with the formalisation, but we stick to a homogeneous

equality here.

2 THE INTRINSIC QUOTIENTED SYNTAX OF TYPE THEORY
As explained in the introduction, our goal is to formalise semantic proofs for the metatheory of

dependent type theory, in particular proofs by gluing. Thus, we abandon the presentation of type

theory in terms of raw terms and typing judgements in favour of a presentation based on CwFs.

Here, our object theory supports dependent products and booleans with large eliminations, so the

CwFs that we consider shall be equipped with Π types and booleans. In this section, we introduce

the notions of weak model (based on propositional equalities) and strict model (based on definitional

equalities) for the theory of CwFs, and we show why it is difficult to work with weak models.

Finally, we will review a handful of concrete model constructions. The last one illustrates the main

idea behind the strictification construction in this paper in a very simple setting.

2.1 Categories with families
Definition 1 (CwF, [model.agda]). A weak category with families in U (in the inner layer of our

two-level metatheory) is defined by the following record, which we denote by CwF.

Con : U [◦] : 𝐴[𝛾 ◦ 𝛿] = 𝐴[𝛾] [𝛿]
Sub : Con → Con → U [id] : 𝐴[id] = 𝐴
Ty : Con → U – [– ] : Tm Γ 𝐴 → (𝛾 : Sub∆Γ) → Tm∆ (𝐴[𝛾])
Tm : (Γ : Con) → Ty Γ → U [◦] : [◦]∗ (𝑎[𝛾 ◦ 𝛿]) = 𝑎[𝛾] [𝛿]
– ◦ – : Sub∆Γ → SubΘ ∆ → SubΘ Γ [id] : [id]∗ (𝑎[id]) = 𝑎
ass : (𝛾 ◦ 𝛿) ◦ 𝜃 = 𝛾 ◦ (𝛿 ◦ 𝜃 ) – ⊲ – : (Γ : Con) → Ty Γ → Con

id : Sub Γ Γ – , – : (𝛾 : Sub∆Γ) → Tm∆ (𝐴[𝛾]) → Sub∆ (Γ ⊲𝐴)
idl : id ◦ 𝛾 = 𝛾 ,◦ : (𝛾, 𝑎) ◦ 𝛿 = (𝛾 ◦ 𝛿, [◦]∗ (𝑎[𝛿]))
idr : 𝛾 ◦ id = 𝛾 p : Sub (Γ ⊲𝐴) Γ
⋄ : Con q : Tm (Γ ⊲𝐴) (𝐴[p])
𝜖 : Sub Γ ⋄ ⊲𝛽1 : p ◦ (𝛾, 𝑎) = 𝛾
⋄𝜂 : (𝜎 : Sub Γ ⋄) → 𝜎 = 𝜖 ⊲𝛽2 : ( [◦] · ⊲𝛽1)∗ (q[𝛾, 𝑎]) = 𝑎
– [– ] : Ty Γ → Sub∆Γ → Ty∆ ⊲𝜂 : id = (p, q)

Note that we overloaded the notation for the substitution operation – [– ] and its functor laws

for Ty and Tm (the latter refer to the former in the form of a transport on the left). Note also that

we make extensive use of implicit arguments: for example, – ◦ – takes Γ , ∆, Θ implicitly, p takes Γ
and 𝐴 implicitly, and so on. The constructors p and q let us interpret variables as well-scoped and

well-typed De Bruijn indices. The first few are defined as follows:

q : Tm (Γ ⊲𝐴) (𝐴[p]), q[p] : Tm (Γ ⊲𝐴 ⊲𝐵) (𝐴[p] [p]), q[p] [p] : Tm (Γ ⊲𝐴 ⊲𝐵 ⊲𝐶) (𝐴[p] [p] [p]) .
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8 Ambrus Kaposi and Loïc Pujet

We introduce substitution lifting and singleton substitutions with the following abbreviations:

(𝛾 : Sub∆Γ)↑ : Sub (∆ ⊲𝐴[𝛾]) (Γ ⊲𝐴) :≡ (𝛾 ◦ p, [◦]∗ q)
⟨(𝑎 : Tm Γ 𝐴)⟩ : Sub Γ (Γ ⊲𝐴) :≡ (id, [id]∗ 𝑎).

Wewrite p𝑛 for the 𝑛-times p◦p◦ . . . p composition of p. Furthermore, the following three equations

can be proved with a simple use of the 𝐽 eliminator:

(1) given 𝑒 : 𝐴 = 𝐴′
and 𝑎 : Tm Γ 𝐴, we have (𝑒∗ 𝑎) [𝛾] = 𝑒∗ (𝑎[𝛾]),

(2) given 𝑒 : ∆ = ∆′
and 𝛾 : Sub∆Γ and 𝛿 : SubΘ ∆′

, we have (𝑒∗ 𝛾) ◦ 𝛿 = 𝛾 ◦ 𝑒∗ 𝛿 ,
(3) given 𝑒 : 𝐴 = 𝐴′

and 𝑎 : Tm Γ 𝐴, we have 𝑒∗ ⟨𝑎⟩ = ⟨𝑒∗ 𝑎⟩.

Lastly, we prove by J on 𝑒′ : 𝛾 = 𝛾 ′ that 𝛾, 𝑎 = 𝛾 ′, 𝑒∗ 𝑎. We consider this equation as a congruence

rule and we apply it implicitly when needed.

Definition 2 (CwF). A strict category with families is a CwF for which all equations are definitional
(i.e., stated using ≡ instead of =), except for ⊲𝜂. As a consequence, all the transports which appear in the
definition of a CwF become redundant. For example, we have [id] : 𝐴[id] ≡ 𝐴 for all𝐴 : Ty Γ , and thus
given an 𝑎 : Tm Γ 𝐴, we have 𝑎[id] : Tm Γ (𝐴[id]), so by equality reflection, 𝑎[id] : Tm Γ 𝐴, meaning
that the [id] law for terms can be stated as 𝑎[id] ≡ 𝑎. We denote the corresponding record type by CwF.
Since it uses the strict equality, this record lives in the outer layer of our two-level metatheory, and has
no counterpart in the Agda formalisation.

Definition 3 (Π types, [model.agda]). We say that a CwF supports weak dependent products if it
is equipped with the following additional components. The extended record type is denoted by CwFΠ .

Π : (𝐴 : Ty Γ) → Ty (Γ ⊲𝐴) → Ty Γ app : Tm Γ (Π𝐴𝐵) → Tm (Γ ⊲𝐴) 𝐵
Π[] : (Π𝐴𝐵) [𝛾] = Π (𝐴[𝛾]) (𝐵 [𝛾↑]) app[] : (app 𝑡) [𝛾↑] = app (Π[]∗ (𝑡 [𝛾]))
lam : Tm (Γ ⊲𝐴) 𝐵 → Tm Γ (Π𝐴𝐵) Π𝛽 : app (lam 𝑡) = 𝑡
lam[] : Π[]∗ ((lam 𝑡) [𝛾]) = lam (𝑡 [𝛾↑]) Π𝜂 : lam (app 𝑡) = 𝑡

We introduce two counterparts to this definition in the case of strict CwFs. The most straightforward
one is fully strict Π types, for which all 5 equations are definitional. We signify that a strict CwF is
equipped with fully strict Π types by using the subscript Π . We also introduce the weaker notion of
substitution-strict Π types, for which only the Π[], lam[] and app[] laws are strict, while Π𝛽 and Π𝜂
remain weak. We denote substitution-strict Π types by using the subscript Π . For example, a CwFΠ is a
strict CwF with fully strict Π types, a CwFΠ is a strict CwF with substitution-strict Π types, and a
CwFΠ is a weak CwF with weak Π types.

, Vol. 1, No. 1, Article . Publication date: February 2018.

[Link broken for the review process]/model.agda


Type Theory in Type Theory Using a Strictified Syntax 9

Definition 4 (Bool, [model.agda]). A CwF supports weak booleans with large elimination when
it is equipped with the following additional components. The extended record is denoted by CwFBool.

Bool : Ty Γ iteT : Ty Γ → Ty Γ → Tm Γ Bool → Ty Γ

Bool[] : Bool[𝛾] = Bool Bool𝛽T
1
: iteT𝐴𝐴′ true = 𝐴

true : Tm Γ Bool Bool𝛽T
2
: iteT𝐴𝐴′ false = 𝐴′

true[] : Bool[]∗ (true[𝛾]) = true Bool𝛽t
1
: itet 𝑃 𝑝 𝑝′ true = 𝑝

false : Tm Γ Bool Bool𝛽t
2
: itet 𝑃 𝑝 𝑝′ false = 𝑝′

false[] : Bool[]∗ (false[𝛾]) = false

itet : (𝑃 : Ty (Γ ⊲Bool)) → Tm Γ (𝑃 [⟨true⟩]) → Tm Γ (𝑃 [⟨false⟩]) →
(𝑏 : Tm Γ Bool) → Tm Γ (𝑃 [⟨𝑏⟩])

iteT [] : (iteT𝐴𝐴′ 𝑏) [𝛾] = iteT (𝐴[𝛾]) (𝐴′ [𝛾]) (Bool[]∗ (𝑏 [𝛾]))
itet [] : (𝛼 𝑏)∗ ((itet 𝑃 𝑝 𝑝′ 𝑏) [𝛾]) =

itet (Bool[]∗ (𝑃 [𝛾↑])) (true[]∗ ((𝛼 true)∗ 𝑝)) (true[]∗ ((𝛼 false)∗ 𝑝′)) (Bool[]∗ (𝑏 [𝛾]))

In equation itet [], we used 𝛼 (𝑢 : Tm Γ Bool) : 𝑃 [⟨𝑢⟩] [𝛾] = 𝑃 [Bool[]∗ (𝛾↑)] [⟨Bool[]∗ (𝑢 [𝛾])⟩]
which we prove in Figure 1 in the Appendix. In the case of strict CwFs, we distinguish between strict
booleans, for which all 9 equations are definitional, and substitution-strict booleans for which only the
5 substitution laws are strict. These are denoted by Bool and Bool subscripts, respectively.

2.2 Weak models vs. strict models in practice
The weak models are the only ones that we can define in the inner layer of our two-level type

theory or in our Agda formalisation, but unfortunately they are especially prone to transport

hell. In this subsection, we look at a few examples that illustrate the difference between weak

and substitution-strict models (more precisely, between a CwFΠ,Bool and a CwFΠ,Bool). For our first
example, recall that we defined function application as an inverse to the lam operator. We can

define a more traditional binary application and prove its 𝛽 law as follows:

– • – : Tm Γ (Π𝐴𝐵) → (𝑎 : Tm Γ 𝐴) → Tm Γ (𝐵 [⟨𝑎⟩])
𝑓 • 𝑎 :≡ (app 𝑓 ) [⟨𝑎⟩]
•𝛽 : (lam𝑏) • 𝑎 ≡ (app (lam𝑏)) [⟨𝑎⟩]Π𝛽=𝑏 [⟨𝑎⟩]

So far, there is no difference between working in a weak or substitution-strict model.

Problem 5. The 𝜂 law for binary application can be proved in both CwFΠ,Bool and CwFΠ,Bool.

Statement and proof of the 𝜂 law in a CwFΠ,Bool. First of all, we have to express in our ob-

ject theory what we write in the metatheory as 𝜆𝑥.𝑓 𝑥 . Given an 𝑓 : Tm Γ (Π𝐴𝐵), we weaken it to

𝑓 [p] : Tm (Γ ⊲𝐴) ((Π𝐴𝐵) [p]) so that we can apply it to q : Tm (Γ ⊲𝐴) (𝐴[p]) in the same context

(q is the zero De Bruijn index). In a CwFΠ,Bool, we cannot use binary application on 𝑓 [p] because it
does not have a Π type, it has an instantiated type. So we transport it along the substitution rule

Π[]. Now we can write lam (Π[]∗ (𝑓 [p]) • q), but this is a Tm Γ (Π𝐴 (𝐵 [p↑] [⟨q⟩])) rather than a
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10 Ambrus Kaposi and Loïc Pujet

Tm Γ (Π𝐴𝐵). Firstly, we show

p↑ ◦ ⟨q⟩ ≡
(p ◦ p, [◦]∗ q) ◦ ⟨q⟩ =(,◦)
((p ◦ p) ◦ ⟨q⟩, [◦]∗ (( [◦]∗ q) [⟨q⟩])) =(1)
((p ◦ p) ◦ ⟨q⟩, [◦]∗ ( [◦]∗ (q[⟨q⟩]))) =(ass)
(p ◦ (p ◦ ⟨q⟩), ass∗ ( [◦]∗ ( [◦]∗ (q[⟨q⟩])))) =(⊲𝛽1)
(p ◦ id, ⊲𝛽1∗ (ass∗ ( [◦]∗ ( [◦]∗ (q[⟨q⟩]))))) =(idr)
(p, idr∗ (⊲𝛽1∗ (ass∗ ( [◦]∗ ( [◦]∗ (q[⟨q⟩])))))) =(·∗)
(p, ( [◦] · [◦] · ass · ⊲𝛽1 · idr)∗ (q[⟨q⟩])) ≡
(p, ( [◦] · [◦] · ass · ⊲𝛽1 · idr · [id] · [id])∗ (q[⟨q⟩])) =(·∗)
(p, [id]∗ (( [◦] · [◦] · ass · ⊲𝛽1 · idr · [id])∗ (q[⟨q⟩]))) ≡
(p, [id]∗ (( [◦] · ⊲𝛽1)∗ (q[⟨q⟩]))) =(⊲𝛽2)
(p, [id]∗ ( [id]∗ q)) =(·∗)
(p, ( [id] · [id])∗ q) ≡
(p, q) =(⊲𝜂)
id,

(4)

and now we can state the 𝜂 law for traditional application as

•𝜂 : ( [◦] · (4) · [id])∗ (lam (Π[]∗ (𝑓 [p]) • q)) = 𝑓 .

Note that we had to work quite hard just to be able to state the 𝜂 law. To prove it, we first show

𝑒∗ (lam𝑏) = lam (𝑒∗ 𝑏) (5)

by J on 𝑒 : 𝐵 = 𝐵′ for any 𝑏 : Tm (Γ ⊲𝐴) 𝐵. Now we reason as follows:

•𝜂 : ( [◦] · (4) · [id])∗ (lam (Π[]∗ (𝑓 [p]) • q)) ≡
([◦] · (4) · [id])∗ (lam ((app (Π[]∗ (𝑓 [p]))) [⟨q⟩])) =(app[])
( [◦] · (4) · [id])∗ (lam ((app 𝑓 ) [p↑] [⟨q⟩])) =( [◦])
([◦] · (4) · [id])∗ (lam ( [◦]∗ ((app 𝑓 ) [p↑ ◦ ⟨q⟩]))) =(4)
( [◦] · (4) · [id])∗ (lam ( [◦]∗ ((4)∗ ((app 𝑓 ) [id])))) =(·∗)
( [◦] · (4) · [id])∗ (lam ((4) · [◦])∗ ((app 𝑓 ) [id])) =(5)
lam (( [◦] · (4) · [id])∗ ((4) · [◦])∗ ((app 𝑓 ) [id])) =(·∗)
lam (((4) · [◦] · [◦] · (4))∗ ( [id]∗ ((app 𝑓 ) [id]))) ≡
lam ( [id]∗ ((app 𝑓 ) [id])) =( [id])
lam (app 𝑓 ) =(Π𝜂)
𝑓 □
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Statement and proof of the 𝜂 law in a CwFΠ,Bool. When stating •𝜂, there is no need to trans-
port 𝑓 [p] when 𝜂-expanding 𝑓 because Π[] is definitional. The type of lam (𝑓 [p] • q) is

Tm Γ (Π𝐴 (𝐵 [𝑝↑] [⟨q⟩])) ≡((4), without the last step which uses the weak ⊲𝜂)
Tm Γ (Π𝐴 (𝐵 [p, q])) ≡([id])
Tm Γ (Π (𝐴[id]) (𝐵 [p, q])) ≡(idl)
Tm Γ (Π (𝐴[id]) (𝐵 [id ◦ p, q])) ≡
Tm Γ (Π (𝐴[id]) (𝐵 [id↑])) ≡(Π[])
Tm Γ ((Π𝐴𝐵) [id]) ≡([id])
Tm Γ (Π𝐴𝐵),

so the statement is simply lam (𝑓 [p] • q) = 𝑓 . Using similar reasoning, its proof is just Π𝜂. □

Remark 6. It is possible to state and prove •𝜂 in a CwFΠ,Bool without relying on ⊲𝜂: we prove
𝑒∗ (id ◦ p {𝐴}, idl∗ (q {𝐴})) = (id ◦ (p {𝐴′}), (𝑒 · idl)∗ (q {𝐴′})) by J on 𝑒 : 𝐴 = 𝐴′; this implies that
[id]∗ (p, q) = id↑; now we can show that Π𝐴 (𝐵 [p, q]) is the same as Π (𝐴[id]) (𝐵 [id↑]), which by
Π[] and [id] is the same as Π𝐴𝐵. However lots of transport trickery is needed to make this precise.

For our second example, we use the non-dependent function type 𝐴 ⇒ 𝐵 :≡ Π𝐴 (𝐵 [p]) for
𝐴, 𝐵 : Ty Γ . In a CwFΠ,Bool, the substitution law for ⇒ can be proven as follows:

(𝐴 ⇒ 𝐵) [𝛾] ≡ (Π𝐴 (𝐵 [p])) [𝛾] Π[ ]
= Π (𝐴[𝛾]) (𝐵 [p] [𝛾↑]) [◦]

= Π (𝐴[𝛾]) (𝐵 [p ◦ (𝛾↑)]) ⊲𝛽1
=

Π (𝐴[𝛾]) (𝐵 [𝛾 ◦ p]) [◦]
= Π (𝐴[𝛾]) (𝐵 [𝛾] [p]) ≡ (𝐴[𝛾]) ⇒ (𝐵 [𝛾])

while in a CwFΠ,Bool, we have definitionally (𝐴 ⇒ 𝐵) [𝛾] ≡ (𝐴[𝛾]) ⇒ (𝐵 [𝛾]).
The most dramatic example of transport hell in a CwFΠ,Bool is already there in Definition 4:

we need the proof in Figure 1 to even state the substitution law for itet. Out of the 18 steps in

the equational reasoning proof, exactly half are CwFΠ,Bool-equations, while the other half are

transport-moving equations such as the relationship of transitivity and transport (·∗) and equations
commuting transport with instantiation (1), composition (2), single substitution (3). Coming up

with this proof consumes lots of brainpower, but no insight comes from delivering it. In contrast,

in a CwFΠ,Bool, the same equation holds definitionally.

As a last example, we define the nondependent eliminator for booleans

ifthenelse : Tm Γ Bool → Tm Γ 𝐴 → Tm Γ 𝐴 → Tm Γ 𝐴

in a CwFΠ,Bool as

ifthenelse𝑏 𝑎 𝑎′ :≡ ([◦] · ⊲𝛽1 · [id])∗ (itet (𝐴[p]) (( [id] · ⊲𝛽1 · [◦])∗ 𝑎) (( [id] · ⊲𝛽1 · [◦])∗ 𝑎′) 𝑏)

and in aCwFΠ,Bool as ifthenelse𝑏 𝑎 𝑎
′
:≡ itet (𝐴[p]) 𝑎 𝑎′ 𝑏. Proving the substitution law (ifthenelse𝑏 𝑎 𝑎′) [𝛾] =

ifthenelse (Bool[]∗ (𝑏 [𝛾])) (𝑎[𝛾]) (𝑎′ [𝛾]) in a CwFΠ,Bool is a great challenge for weak CwFs enthu-

siasts, but we won’t attempt it here. This equation is in fact definitional in a CwFΠ,Bool.

2.3 Examples of weak and strict models
Now that we have a definition of model, we look at some concrete instances. We will first show a

completely weak CwFΠ,Bool, then a strict CwFΠ,Bool, then finally a substitution-strict CwFΠ,Bool.

Definition 7 (I, [initial.agda]). The syntax of our object theory is a CwFΠ,Bool.
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Construction. We define the syntax (noted I) as a quotient inductive-inductive type (QIIT)
whose constructors are precisely the fields in the record CwFΠ,Bool. The induction principle that

we get by defining I as a QIIT states that any CwFΠ,Bool indexed over I has a section, which is

equivalent to the initiality of I. Note that for this definition to make sense, we need to be able to

define this QIIT inside of U. Observational type theory already supports quotient types [Pujet

and Tabareau 2022], and furthermore QIITs are supported by the setoid model [Kaposi and Z. Xie

2021] which is the “standard” model for OTT. Thus, the proof of normalisation for OTT [Pujet and

Tabareau 2022] should be extensible to cover this particular QIIT, and we feel justified in adding it

to our internal layer (and to our formalisation as well). □

Definition 8. The standard model is a CwFΠ,Bool where even ⊲𝜂 is definitional.

Construction. The so-called standard model uses the metatheory as a model. For this reason,

it is also known as the metacircular model, or the type model. It is defined as follows:

Con :≡ U Sub∆Γ :≡ ∆ → Γ Ty Γ :≡ Γ → U Tm Γ 𝐴 :≡ (𝛾• : Γ) → 𝐴𝛾•

Since the substitutions are interpreted as OTT functions, they form a strict category. Dependency

on contexts is implemented via function space and instantiation is function composition, so we get

definitional functor laws.

(𝛾 ◦ 𝛿) 𝜃• :≡ 𝛾 (𝛿 𝜃•) id :≡ 𝜆𝛾•. 𝛾• 𝐴[𝛾] 𝛿• :≡ 𝐴 (𝛾 𝛿•) 𝑎[𝛾] 𝛿• :≡ 𝑎 (𝛾 𝛿•)

The empty context is interpreted as OTT’s unit type, which needs its definitional 𝜂 law to implement

⋄𝜂. Context extension is interpreted by OTT’s Σ types, and the corresponding combinators come

from the constructor and destructors of Σ:

Γ ⊲𝐴 :≡ (𝛾• : Γ) ×𝐴𝛾• (𝛾, 𝑎) 𝛿• :≡ (𝛾 𝛿•, 𝑎 𝛿•) p (𝛾•, 𝑎•) :≡ 𝛾• q (𝛾•, 𝑎•) :≡ 𝑎•

Thus we get that the ⊲𝛽 and ⊲𝜂 laws are definitional. As an illustration, we derive the latter:

(p, q) ≡ 𝜆(𝛾•, 𝑎•). (p, q) (𝛾•, 𝑎•) ≡ 𝜆(𝛾•, 𝑎•) . (p (𝛾•, 𝑎•), q (𝛾•, 𝑎•)) ≡ 𝜆(𝛾•, 𝑎•). (𝛾•, 𝑎•) ≡ id.

Dependent products and booleans are directly inherited from their metatheoretical counter-

parts: for example, Π𝐴𝐵𝛾• :≡ (𝑎• : 𝐴𝛾•) → 𝐵(𝛾•, 𝑎•), and the substitution rule Π[] holds via
(Π𝐴𝐵) [𝛾] 𝛿• ≡ Π𝐴𝐵 (𝛾 𝛿•) ≡ (𝑎• : 𝐴 (𝛾 𝛿•)) → 𝐵 (𝛾 𝛿•, 𝑎•) ≡ (𝑎• : 𝐴[𝛾] 𝛿•) → 𝐵 [𝛾↑] (𝛾•, 𝑎•) ≡
Π (𝐴[𝛾]) (𝐵 [𝛾↑]) 𝛿•. □

The construction of the standard model is possible thanks to the internal universe U of our

metatheory, which is closed under dependent products and booleans. This encourages us to consider

a generalisation of this construction which is parameterised by an arbitrary universe. The following

definition is called a higher-order model in [Bocquet et al. 2023].

Definition 9 (A universe closed under Π and Bool). A universe inside U closed under Π and
Bool contains the following components. We denote the type of codes in the universe by Ty and its
elements function (usually called El) by Tm. We use brick red colour to disambiguate. Note that the
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equations for Π and Bool are weak.

Ty : U false : TmBool

Tm : Ty → U ifTy : Ty → Ty → TmBool → Ty

Π : (𝐴 : Ty) → (Tm𝐴 → Ty) → Ty ifTy𝛽1 : ifTy𝐴𝐵 true = 𝐴

lam : ((𝑎 : Tm𝐴) → Tm (𝐵 𝑎)) → Tm (Π𝐴𝐵) ifTy𝛽2 : ifTy𝐴𝐵 false = 𝐵

app : Tm (Π𝐴𝐵) → (𝑎 : Tm𝐴) → Tm (𝐵 𝑎) ifTm : (𝑃 : TmBool → Ty) →
Π𝛽 : app (lam 𝑡) = 𝑡 Tm (𝑃 true) → Tm (𝑃 false) →
Π𝜂 : lam (app 𝑡) = 𝑡 (𝑏 : TmBool) → Tm (𝑃 𝑏)
Bool : Ty ifTm𝛽1 : ifTm 𝑃 𝑢 𝑣 true = 𝑢

true : TmBool ifTm𝛽1 : ifTm 𝑃 𝑢 𝑣 false = 𝑣

The next model construction illustrates our strictification method in a simple setting: equipping

a weak universe with a strict substitution calculus coming from the metatheory. In Problem 14,

the strict substitution calculus will come from another model. The following construction is called

set-contextualisation in [Bocquet et al. 2023].

Definition 10 (U-contextualisation). Given a universe Ty–Tm as in Definition 9, its U-
contextualisation is a CwFΠ,Bool.

Construction. The substitution calculus is defined exactly like in the standard model, except

that types and terms come from the universe Ty–Tm and note the appearance of Tm in Γ ⊲𝐴:

Con :≡ U Sub∆Γ :≡ ∆ → Γ Ty Γ :≡ Γ → Ty Tm Γ 𝐴 :≡ (𝛾• : Γ) → Tm (𝐴𝛾•)

(𝛾 ◦ 𝛿) 𝜃• :≡ 𝛾 (𝛿 𝜃•) id :≡ 𝜆𝛾•. 𝛾• 𝐴[𝛾] 𝛿• :≡ 𝐴 (𝛾 𝛿•) 𝑎[𝛾] 𝛿• :≡ 𝑎 (𝛾 𝛿•)
Γ ⊲𝐴 :≡ (𝛾• : Γ)×Tm (𝐴𝛾•) (𝛾, 𝑎) 𝛿• :≡ (𝛾 𝛿•, 𝑎 𝛿•) p (𝛾•, 𝑎•) :≡ 𝛾• q (𝛾•, 𝑎•) :≡ 𝑎•
Π types come from Π-closure of the universe, but context dependency is still OTT-function space,

hence we get weak Π𝛽 , but strict substitution rules.

Π𝐴𝐵𝛾• :≡ Π (𝐴𝛾•) (𝜆𝑎•.𝐵 (𝛾•, 𝑎•)) app 𝑡 (𝛾•, 𝑎•) :≡ app (𝑡 𝛾•) 𝑎• lam 𝑡 𝛾• :≡ lam (𝜆𝑎•.𝑡 (𝛾•, 𝑎•))

Π𝛽 : app (lam 𝑡) (𝛾•, 𝑎•) ≡ app (lam 𝑡 𝛾•) 𝑎• ≡ app (lam (𝜆𝑎•.𝑡 (𝛾•, 𝑎•))) 𝑎•
Π𝛽
= (𝜆𝑎•.𝑡 (𝛾•, 𝑎•)) 𝑎• ≡

𝑡 (𝛾•, 𝑎•)
Π[] : (Π𝐴𝐵) [𝛾] 𝛿• ≡ Π𝐴𝐵 (𝛾 𝛿•) ≡ Π (𝐴 (𝛾 𝛿•)) (𝜆𝑎•.𝐵 (𝛾 𝛿•, 𝑎•)) ≡

Π (𝐴[𝛾] 𝛿•) (𝜆𝑎•.𝐵 [𝛾↑] (𝛾•, 𝑎•)) ≡ Π (𝐴[𝛾]) (𝐵 [𝛾↑]) 𝛿•
Booleans are defined analogously e.g. Bool𝛾• :≡ Bool. □

The standard model is the special case of U-contextualisation when using the universe from the

metatheory Ty :≡ U and Tm𝐴 :≡ 𝐴.

3 PRESHEAVES
This section is a warm up for our general strictification construction in Section 4. We will replace

the substitution calculus in the syntax of type theory by one that comes from presheaves. Although,

for presentation purposes, we only do this in a setting with equality reflection, it illustrates how

the construction would work in an intensional setting if the presheaf model was stricter. That will

be the topic of the next two sections. In this section, first we define the presheaf model in our

OTT-setting, and we observe that it does not support strict Π types. Then we switch to a setting
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14 Ambrus Kaposi and Loïc Pujet

with equality reflection and we redefine the syntax of our object theory inside the presheaf model,

and use this to obtain another, isomorphic model.

Problem 11 (Presheaf model over C, PSh(𝐶)). Given a weak category C (the category part of a
CwF), presheaves over C form a CwF where even ⊲𝜂 is strict.

Construction. The presheaf model of type theory was introduced by [Hofmann 1997]. Here

we analyse it from a strictness perspective, so we only show parts relevant for this.

Contexts are presheaves over C, substitutions are natural transformations:

Con :≡ (Γ : C → U) × (– [– ]Γ : Γ 𝐼 → C(𝐽 , 𝐼 ) → Γ 𝐽 ) ×
([◦]Γ : 𝛾𝐼 [𝑓 ◦ 𝑔]Γ = 𝛾𝐼 [𝑓 ]Γ [𝑔]Γ ) × ([id]Γ : 𝛾𝐼 [𝑓 ]Γ = 𝛾𝐼 )

Sub∆Γ :≡ (𝛾 : (𝛿𝐼 : ∆ 𝐼 ) → Γ 𝐼 ) × (– [– ]𝛾 : (𝛿𝐼 : ∆ 𝐼 ) (𝑓 : C(𝐽 , 𝐼 )) → (𝛾 𝛿𝐼 ) [𝑓 ]Γ = 𝛾 (𝛿𝐼 [𝑓 ]∆))
We overload Γ both for the element of Con and its first component, and similarly for Sub. The
second component – [– ]Γ of a presheaf Γ is called restriction. As we express naturality using

Prop-valued equalities, when comparing two natural transformations for definitional equality, only

their function parts matter, hence we get a strict category. For example, composition of substitutions

is definitionally associative:

(𝛾 ◦ 𝛿) 𝜃𝐼 :≡ 𝛾 (𝛿 𝜃𝐼 ) (𝛾 ◦ 𝛿) ◦ 𝜃 ≡ 𝜆𝜉∗ . 𝛾 (𝛿 (𝜃 𝜉∗)) ≡ 𝛾 ◦ (𝛿 ◦ 𝜃 )
The empty context is the constant unit presheaf defined as⋄Γ :≡ ⊤. Types are dependent presheaves,
with the trick that restriction takes an equality argument which determines the context-witness

index that is returned; terms are dependent natural transformations:

Ty Γ :≡ (𝐴 : (𝐼 : C) → Γ 𝐼 → U) × (– [– ]𝐴 : 𝐴 𝐼 𝛾𝐼 → (𝑓 : C(𝐽 , 𝐼 )) → 𝛾𝐼 [𝑓 ]Γ = 𝛾 𝐽 → 𝐴 𝐽 𝛾 𝐽 ) ×
([◦]𝐴 : 𝑎𝐼 [𝑓 ◦ 𝑔]𝐴 [◦]Γ = (𝑎𝐼 [𝑓 ]𝑎 refl) [𝑔]𝐴 refl) × ([id]𝐴 : 𝑎𝐼 [𝑓 ]𝐴 [id]Γ = 𝑎𝐼 )

Tm Γ 𝐴 :≡ (𝑎 : (𝛾𝐼 : Γ 𝐼 ) → 𝐴 𝐼 𝛾𝐼 ) ×
(– [– ]𝑎 : (𝛾𝐼 : Γ 𝐼 ) (𝑓 : C(𝐽 , 𝐼 )) → (𝑎𝛾𝐼 ) [𝑓 ]𝐴 refl = 𝑎 (𝛾𝐼 [𝑓 ]Γ ))

Instantiation of the family part of a type is pointwise, while restriction reuses restriction of 𝐴 and

naturality of 𝛾 is only needed to obtain the equality.

𝐴[𝛾] 𝐼 𝛿𝐼 :≡ 𝐴 𝐼 (𝛾 𝛿𝐼 )

𝑎𝐼 [𝑓 ]𝐴[𝛾 ] (𝑒 : 𝛿𝐼 [𝑓 ]∆ = 𝛿 𝐽 ) :≡ 𝑎𝐼 [𝑓 ]𝐴 ((𝛾 𝛿𝐼 ) [𝑓 ]Γ
𝛿𝐼 [ 𝑓 ]𝛾
= 𝛾 (𝛿𝐼 [𝑓 ]∆)

𝑒
= 𝛾 𝛿 𝐽 )

The functor laws for type instantiation are strict (we write underscore for equalities because they

are proof irrelevant):

𝐴[𝛾 ◦ 𝛿] 𝐼 𝜃𝐼 ≡ 𝐴 𝐼 ((𝛾 ◦ 𝛿) 𝜃𝐼 ) ≡ 𝐴 (𝛾 (𝛿 𝜃𝐼 )) ≡ 𝐴[𝛾] [𝛿] 𝐼 𝜃𝐼 𝐴[id] 𝐼 𝛾𝐼 ≡ 𝐴 𝐼 (id𝛾𝐼 ) ≡ 𝐴 𝐼 𝛾𝐼
𝑎𝐼 [𝑓 ]𝐴[𝛾◦𝛿 ] _ ≡ 𝑎𝐼 [𝑓 ]𝐴 _ ≡ 𝑎𝐼 [𝑓 ]𝐴[𝛾 ] _ ≡ 𝑎𝐼 [𝑓 ]𝐴[𝛾 ] [𝛿 ] _ 𝑎𝐼 [𝑓 ]𝐴[id] _ ≡ 𝑎𝐼 [𝑓 ]𝐴 _

Term instantiation is function composition in its first components and the second component is in

Prop, so functor laws for terms are also strict. Context extension is pointwise:

(Γ ⊲𝐴) 𝐼 :≡ (𝛾𝐼 : Γ 𝐼 ) ×𝐴 𝐼 𝛾𝐼 (𝛾𝐼 , 𝐴𝐼 ) [𝑓 ]Γ ⊲𝐴 :≡ (𝛾𝐼 [𝑓 ]Γ , 𝑎𝐼 [𝑓 ]𝐴 refl)
The proof-relevant part of – , –, p and q is just pairing of OTT’s Σ, first and second projections,

hence ⊲𝛽1, ⊲𝛽2, ⊲𝜂 are all definitional. Note that the naturality components in p and q are given by

refl (they are definitionally natural), and so is q[p], q[p] [p], and so on. □

Remark 12. We relied crucially on equalities being in Prop. It is not clear whether a CwF of
presheaves can be obtained with a U-valued equality type (even if it has propositional UIP).

, Vol. 1, No. 1, Article . Publication date: February 2018.



Type Theory in Type Theory Using a Strictified Syntax 15

Although we have a completely strict CwF of presheaves, we don’t know how to equip it with

strict Π types, or even substitution-strict Π types. We will explain why the usual definition of

Π only has a weak substitution rule. But first we need the Yoneda embedding y and the Yoneda

lemma’s isomorphism yl:

y : C → Con y : C(𝐽 , 𝐼 ) → Sub (y 𝐽 ) (y 𝐼 ) ylΓ : Γ 𝐼 � Sub (y 𝐼 ) Γ : yl−1Γ
y 𝐼 :≡ 𝜆𝐽 .C(𝐽 , 𝐼 ) y 𝑓 𝑔 :≡ 𝑓 ◦ 𝑔 ylΓ 𝛾𝐼 :≡ 𝜆𝑓 .𝛾𝐼 [𝑓 ]Γ
𝑓 [𝑔]y 𝐼 :≡ 𝑓 ◦ 𝑔 yl−1Γ 𝛾 :≡ 𝛾 id𝐼

We have that ylΓ 𝛾𝐼 is natural both in 𝐼 and in Γ , but both of these equations are weak:

ylΓ 𝛾𝐼 ◦ y 𝑓 ≡ 𝜆𝑔.𝛾𝐼 [𝑓 ◦ 𝑔]𝛾
[◦]Γ
= 𝜆𝑔.𝛾𝐼 [𝑓 ]Γ [𝑔]Γ ≡ ylΓ (𝛾𝐼 [𝑓 ]Γ )

𝛾 ◦ yl∆ 𝛿𝐼 ≡ 𝜆𝑓 . 𝛾 (𝛿𝐼 [𝑓 ]∆)
𝛿𝐼 [ 𝑓 ]𝛾
= 𝜆𝑓 . (𝛾 𝛿𝐼 ) [𝑓 ]Γ ≡ ylΓ (𝛾 𝛿𝐼 ) (6)

Π types are defined in the presheaf model as follows:

Π𝐴𝐵 𝐼 𝛾𝐼 :≡ Tm (y 𝐼 ⊲𝐴[ylΓ 𝛾𝐼 ]) (𝐵 [(ylΓ 𝛾𝐼 )↑]) 𝑡 [𝑓 ]Π𝐴𝐵 𝑒 :≡ ([◦]Γ · 𝑒)∗ (𝑡 [(y 𝑓 )↑])

To show Π[], we need naturality of yl, which is not definitional in general:

(Π𝐴𝐵) [𝛾] 𝐼 𝛿𝐼 ≡ Tm (y 𝐼 ⊲𝐴[ylΓ (𝛾 𝛿𝐼 )]) (𝐵 [(ylΓ (𝛾 𝛿𝐼 ))↑])
(6)
=

Tm (y 𝐼 ⊲𝐴[𝛾 ◦ yl∆ 𝛿𝐼 ]) (𝐵 [(𝛾 ◦ yl∆ 𝛿𝐼 )↑]) ≡ Tm (y 𝐼 ⊲𝐴[𝛾] [yl∆ 𝛿𝐼 ]) (𝐵 [𝛾↑] [(yl∆ 𝛿𝐼 )↑]) ≡
(Π (𝐴[𝛾]) (𝐵 [𝛾↑])) 𝐼 𝛿𝐼

If the domain is locally representable, there is another, first-order Π type (it can only be iterated

in the codomain). Unfortunately that Π type is not strict either. An 𝐴 : Ty Γ is called locally

representable if we have an operation

– ⊲𝐴 – : (𝐼 : C) → Γ 𝐼 → C

together with the following isomorphism for any 𝐼 , 𝐽 , 𝛾𝐼 : Γ 𝐼 which is natural in 𝐽 where we give

names to the maps in both directions:

(p𝐴 ◦ – , q𝐴 [– ]) : C(𝐽 , 𝐼 ⊲𝐴 𝛾𝐼 ) � (𝑓 : C(𝐽 , 𝐼 )) ×𝐴 𝐽 (𝛾𝐼 [𝑓 ]Γ ) : – ,𝐴 – ,

here

p𝐴 : C(𝐼 ⊲𝐴 𝛾𝐼 , 𝐼 ) and q𝐴 : 𝐴 (𝐼 ⊲𝐴 𝛾𝐼 , 𝐼 ) (𝛾𝐼 [p𝐴]Γ ).

If 𝐴 is locally representable, then so is 𝐴[𝛾] by

𝐼 ⊲𝐴[𝛾 ] 𝛿𝐼 :≡ 𝐼 ⊲𝐴 𝛾 𝛿𝐼 with p𝐴[𝛾 ] :≡ p𝐴 and q𝐴[𝛾 ] :≡ q𝐴 .

Now we can define the first-order Π type by the dependent presheaf with action on objects as

Π𝐴𝐵 𝐼 𝛾𝐼 :≡ 𝐵 (𝐼 ⊲𝐴 𝛾𝐼 ) (𝛾𝐼 [p𝐴]Γ , q𝐴).

It has the usual universal property Tm (Γ ⊲𝐴) 𝐵 � Tm Γ (Π𝐴𝐵), but its Π[] law is weak:

(Π𝐴𝐵) [𝛾] 𝐼 𝛿𝐼 ≡ 𝐵 (𝐼 ⊲𝐴 𝛾 𝛿𝐼 ) ((𝛾 𝛿𝐼 ) [p𝐴]Γ , q𝐴)
𝛿𝐼 [p𝐴 ]𝛾

= 𝐵 (𝐼 ⊲𝐴 𝛾 𝛿𝐼 ) (𝛾 (𝛿𝐼 [p𝐴]Γ ), q𝐴) ≡
𝐵 [𝛾↑] (𝐼 ⊲𝐴 𝛾 𝛿𝐼 ) (𝛿𝐼 [p𝐴]Γ , q𝐴) ≡ 𝐵 [𝛾↑] (𝐼 ⊲𝐴[𝛾 ] 𝛿𝐼 ) (𝛿𝐼 [p𝐴[𝛾 ]]Γ , q𝐴[𝛾 ]) ≡ Π (𝐴[𝛾]) (𝐵 [𝛾↑]) 𝐼 𝛿𝐼
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16 Ambrus Kaposi and Loïc Pujet

3.1 If we had some definitional equalities...
In this subsection, for readability and motivational reasons, we assume equality reflection (in OTT

as well), that is, we won’t distinguish ≡ and =. The contents of this subsection can be defined in an

intensional setting
1
with lots of effort and the result would be unreadable. We only attempt this in

Sections 4–5 using a stricter notion of presheaf.

In presheaves over the syntax (P :≡ PSh(I)), we have a universe defined by syntactic types and

terms, in other words, a closed type and a family over it:

Ty : TyP ⋄ Tm : TyP (⋄ ⊲ Ty)
Ty Γ tt :≡ TyI Γ Tm Γ (tt, 𝐴) :≡ TmI Γ 𝐴

– [– ]Ty :≡ – [– ]I – [– ]Tm :≡ – [– ]I
As Tm[𝜖,𝐴] is locally representable for any 𝐴, this induces a first-order Π type as explained above.

For 𝐴 : TmP𝑋 (Ty[𝜖]) and 𝐹 : TyP (𝑋 ⊲ Tm[𝜖,𝐴]), we have Π (Tm[𝜖,𝐴]) 𝐹 defined as follows.

Π (Tm[𝜖,𝐴]) 𝐹 Γ 𝑥Γ :≡ 𝐹 (Γ ⊲I 𝐴𝑥Γ ) (𝑥Γ [pI]𝑋 , qI) 𝑓• [𝛾]Π (Tm[𝜖,𝐴] ) 𝐹 :≡ 𝑓• [𝛾↑]𝐹
In the above definition we relied heavily on equality reflection to remove transports.

Its universal property lam : TmP (𝑋 ⊲ Tm[𝜖,𝐴]) 𝐹 � TmP𝑋 (Π (Tm[𝜖,𝐴]) 𝐹 ) : app is given by

lam 𝑓 𝑥Γ :≡ 𝑓 (𝑥Γ [pI]𝑋 , qI) and app 𝑡 (𝑥Γ , 𝑎Γ ) :≡ (𝑡 𝑥Γ ) [⟨𝑎Γ ⟩I]𝐹 .

Using this Π type, we can show that in P, the universe Ty–Tm is closed under Π and Bool, in exactly

the same way as specified in Definition 9. However, we don’t move to an internal language, we

show how to state and define the components of Definition 9 externally. We have already seen that

the internal Ty : U becomes an external Ty : TyP ⋄ and Tm : Ty → U becomes Tm : TyP (⋄ ⊲ Ty).
Externally, Π : (𝐴 : Ty) → (Tm𝐴 → Ty) → Ty becomes

Π : Tm (⋄ ⊲ Ty ⊲ Tm ⇒ Ty[𝜖]) (Ty[𝜖]).

The ⇒ symbol comes from the first-order function space defined above. We define directly

Π (tt, 𝐴, 𝐵) :≡ ΠI𝐴𝐵whichmakes sense because𝐴 : Ty Γ tt ≡ TyI Γ and𝐵 : (Tm ⇒ Ty[𝜖]) Γ (tt, 𝐴) ≡
(Tm[𝜖, q] ⇒ Ty[𝜖]) Γ (tt, 𝐴) ≡ Ty[𝜖] (Γ ⊲ q (tt, 𝐴)) ((tt, 𝐴) [p], q) ≡ Ty (Γ ⊲𝐴) tt ≡ TyI (Γ ⊲𝐴).
Stating abstraction for Π externally is more involved, but its definition is easy:

lam : Tm (⋄ ⊲ Ty ⊲ Tm ⇒ Ty[𝜖] ⊲Π (Tm[p]) (Tm[𝜖, q[p] • q])) (Tm[𝜖,Π] [p])
lam (tt, 𝐴, 𝐵, 𝑡) :≡ lam 𝑡

What we want is a Tm[𝜖,Π] Γ (tt, 𝐴, 𝐵, 𝑡) ≡ TmI Γ (Π𝐴𝐵), and we have that 𝑡 has type

Π (Tm[p]) (Tm[𝜖, q[p] • q]) ≡ Tm (Γ ⊲𝐴) (tt, q (tt, 𝐴[p], 𝐵 [p]) [⟨q⟩]) ≡
Π (Tm[𝜖, q[p]]) (Tm[𝜖, q[p] • q]) ≡ Tm (Γ ⊲𝐴) (tt, 𝐵 [p] [⟨q⟩]) ≡
Tm[𝜖, q[p] • q] (Γ ⊲ q[p] (tt, 𝐴, 𝐵)) ((tt, 𝐴, 𝐵) [p], q) ≡ Tm (Γ ⊲𝐴) (tt, 𝐵) ≡
Tm[𝜖, app q] (Γ ⊲𝐴) (tt, 𝐴[p], 𝐵 [p], q) ≡ TmI (Γ ⊲𝐴) 𝐵.
Tm (Γ ⊲𝐴) (tt, app q (tt, 𝐴[p], 𝐵 [p], q)) ≡

The type of booleans in a P-universe is a Bool : TmP ⋄ (Ty[𝜖]), and is instantiated simply by

Bool tt :≡ BoolI. We state and instantiate the rest of the internal universe analogously, see Definition

13 for a complete version of the statement.

1
We can also obtain the intensional version of this section using Hofmann’s translation [Hofmann 1995; Oury 2005;

Winterhalter et al. 2019].
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Now we define a new model called the P-contextualisation of the P-universe, it is analogous
to Definition 10, but the substitution calculus is not replaced by by substitutions in P ≡ PSh(I)
(instead of by U-function space). The sorts in this model are as follows.

Con :≡ ConP Sub :≡ SubP Ty Γ :≡ TmP Γ (Ty[𝜖]) Tm Γ 𝐴 :≡ TmP Γ (Tm[𝜖,𝐴])

Types and terms are put together from the corresponding components in the P-universe, e.g.
Π𝐴𝐵 :≡ Π[𝜖,𝐴, 𝐵] and Bool :≡ Bool[𝜖].

Substitutions, types and terms in the P-contextualisation model are isomorphic to syntactic types

and terms by Yoneda:

y : ConI → ConP (the Yoneda embedding)

y : SubI ∆Γ � SubP (y∆) (y Γ) (consequence of Yoneda lemma: y :≡ yly Γ )
y : TyI Γ � TmP (y Γ) (Ty[𝜖]) (dependent version of the Yoneda lemma)

y : TmI Γ 𝐴 � TmP (y Γ) (Tm[𝜖, y𝐴]) (dependent version of the Yoneda lemma)

The dependent version of the Yoneda lemma states that for an 𝐹 : TyP𝑋 , we have 𝐹 Γ 𝑥Γ �
TmP (y Γ) (𝐹 [yl𝑋 𝑥Γ ]) where yl𝑋 : 𝑋 Γ → Sub (y Γ)𝑋 is the forward direction of the nondependent

Yoneda lemma.

In summary, viewing the syntax I as aPSh(I)-universe, and then applyingPSh(I)-contextualisation
to this universe, we obtained a model, which by Yoneda is isomorphic to the syntax (not for contexts,

but this can be solved easily). The substitution calculus in this model is given by presheaves, while

types and terms still come from the syntax. This is the essence of the strictification construction in

this paper: replacing the substitution calculus of our syntax with something that is intensionally

better-behaved. In the next two sections, we will redo this construction in an intensional setting

with a stricter notion of presheaves.

4 THE ABSTRACT STRICTIFICATION CONSTRUCTION
In this section, we redo the constructions of the last section in an abstract setting, for any model P.
In the last section, P was fixed to be PSh(I). More precisely, we will do the following.

Def. 13. We specify what a P-universe closed under Π and Bool is.
Con. 14. The P-contextualisation of a P-universe gives a substitution-strict model.

Con. 15. We define a telescopic variant of P-contextualisation.
Def. 16. We specify Yoneda embedding from the syntax to a P-universe.
Con. 17. We show that the telescopic P-contextualisation of a P-universe with a Yoneda embedding is

isomorphic to the syntax.

Instantiating Definition 13 and 16 provides our strictification construction for the syntax. In Section

3 we saw that presheaves don’t suffice. In Section 5, we will see that prefascist sets do.

Definition 9 expresses what a universe closed under Π and Bool is. It is stated in OTT as

metatheory. Now we will say the same but making the metatheory explicit as a P : CwFΠ . What

does it mean that there is a universe in a model P?
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Definition 13 (A universe closed under Π and Bool internal to a P : CwFΠ). We have the
following components (we stop writing P subscripts after the second line). C.f. Definition 9.

Ty : TyP ⋄P
Tm : TyP (⋄P ⊲P Ty)
Π : Tm (⋄ ⊲ Ty ⊲ Tm ⇒ Ty[𝜖]) (Ty[𝜖])
lam : Tm (⋄ ⊲ Ty ⊲ Tm ⇒ Ty[𝜖] ⊲Π (Tm[p]) (Tm[𝜖, q[p] • q])) (Tm[𝜖,Π] [p])
app : Tm (⋄ ⊲ Ty ⊲ Tm ⇒ Ty[𝜖] ⊲ Tm[𝜖,Π]) (Π (Tm[p2]) (Tm[𝜖, q[p2] • q]))
Π𝛽 : app[𝜖,𝐴, 𝐵, lam[𝜖,𝐴, 𝐵, 𝑡]] = 𝑡
Π𝜂 : lam[𝜖,𝐴, 𝐵, app[𝜖,𝐴, 𝐵, 𝑡]] = 𝑡
Bool : Tm ⋄ (Ty[𝜖])
true : Tm ⋄ (Tm[𝜖,Bool])
false : Tm ⋄ (Tm[𝜖,Bool])
iteT : Tm (⋄ ⊲ Ty ⊲ Ty[𝜖] ⊲ Tm[𝜖,Bool[𝜖]]) (Ty[𝜖])
iteT𝛽1 : iteT [𝜖,𝐴, 𝐵, true[𝜖]] = 𝐴
iteT𝛽2 : iteT [𝜖,𝐴, 𝐵, false[𝜖]] = 𝐵
itet : Tm (⋄ ⊲ Tm[𝜖,Bool] ⇒ Ty[𝜖] ⊲ Tm[𝜖, q • true[𝜖]] ⊲ Tm[𝜖, q[p] • false[𝜖]] ⊲ Tm[𝜖,Bool[𝜖]])

(Tm[𝜖, q[p3] • q])
itet𝛽1 : itet [𝜖, 𝑃,𝑢, 𝑣, true[𝜖]] = 𝑢
itet𝛽2 : itet [𝜖, 𝑃,𝑢, 𝑣, false[𝜖]] = 𝑣

Problem 14 (P-contextualisation). Given a universe Ty–Tm internal to a P : CwFΠ as in
Definition 13, its P-contextualisation is a CwFΠ,Bool. C.f. Problem 10.

Construction. The substitution calculus for our new model directly reuses that of P, while
types and terms come from the P-universe we started with. We stop writing P subscripts after the

second line.

Con :≡ ConP 𝐴[𝛾] :≡ 𝐴[𝛾] Π𝐴𝐵 :≡ Π[𝜖,𝐴, lam𝐵]
Sub :≡ SubP 𝑎[𝛾] :≡ 𝑎[𝛾] lam {𝐴} {𝐵} 𝑡 :≡ lam[𝜖,𝐴, lam𝐵, lam 𝑡]
Ty Γ :≡ Tm Γ (Ty[𝜖]) Γ ⊲𝐴 :≡ Γ ⊲ Tm[𝜖,𝐴] app {𝐴} {𝐵} 𝑡 :≡ app (app[𝜖,𝐴, lam𝐵, 𝑡])
Tm Γ 𝐴 :≡ Tm Γ (Tm[𝜖,𝐴]) p :≡ p Bool :≡ Bool[𝜖]
◦ :≡ ◦ q :≡ q true :≡ true[𝜖]
id :≡ id (𝛾, 𝑎) :≡ (𝛾 , 𝑎) false :≡ false[𝜖]
⋄ :≡ ⋄ iteT𝐴𝐴′ 𝑏 :≡ iteT [𝜖,𝐴, 𝐵, 𝑏]
𝜖 :≡ 𝜖 itet 𝑃 𝑝 𝑝′ 𝑏 :≡ itet [𝜖, lam 𝑃, 𝑝, 𝑝′, 𝑏]

All the CwF-equations and substitution laws are strict, while Π𝛽 , Π𝜂, iteT𝛽1,2, itet𝛽1,2 are weak.
Here are some examples:

[◦] : 𝐴[𝛾 ◦ 𝛿] ≡ 𝐴[𝛾 ◦P 𝛿]P
[◦]P≡ 𝐴[𝛾]P [𝛿]P ≡ 𝐴[𝛾] [𝛿]

Π[] : (Π𝐴𝐵) [𝛾] ≡ Π[𝜖,𝐴, lam𝐵] [𝛾] ,◦P≡ Π[𝜖 ◦ 𝛾,𝐴[𝛾], (lam𝐵) [𝛾]]
⋄𝜂P≡
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Π[𝜖,𝐴[𝛾], (lam𝐵) [𝛾]]
lam[ ]P≡ Π[𝜖,𝐴[𝛾], lam (𝐵 [𝛾])] ≡ Π (𝐴[𝛾]) (𝐵 [𝛾↑])

Π𝛽 : app (lam 𝑡) ≡ app (app[𝜖,𝐴, lam𝐵, lam[𝜖,𝐴, lam𝐵, lam 𝑡]]) Π𝛽
= app (lam 𝑡)

Π𝛽P≡ 𝑡

Π𝜂 : lam (app 𝑡) ≡ lam[𝜖,𝐴, lam𝐵, lam (app (app[𝜖,𝐴, lam𝐵, 𝑡]))]
Π𝜂P≡

lam[𝜖,𝐴, lam𝐵, app[𝜖,𝐴, lam𝐵, 𝑡]] Π𝜂
= 𝑡

itet [] : (itet 𝑃 𝑝 𝑝′ 𝑡) [𝛾] ≡ itet [𝜖, lam 𝑃, 𝑝, 𝑝′, 𝑏] [𝛾]
[◦]P≡

itet [𝜖 ◦ 𝛾, lam 𝑃 [𝛾], 𝑝 [𝛾], 𝑝′ [𝛾], 𝑏 [𝛾]]
⋄𝜂P,lam[ ]P≡ itet [𝜖, lam (𝑃 [𝛾↑]), 𝑝 [𝛾], 𝑝′ [𝛾], 𝑏 [𝛾]] ≡

itet (𝑃 [𝛾↑]) (𝑝 [𝛾]) (𝑝′ [𝛾]) (𝑡 [𝛾]) □

We define a variant of the above construction where contexts are inductively defined from the

empty context and context extension.

Problem 15 (Telescopic P-contextualisation). Given a universe Ty–Tm internal to a P : CwFΠ
as in Definition 13, its telescopic P-contextualisation is a CwFΠ,Bool.

Construction. Contexts are now telescopes of types. Telescopes are defined inductive-recursively

by Tel : U and ⌜–⌝ : Tel → ConP with the following constructors:

⋄Tel : Tel ⌜⋄⌝ :≡ ⋄P
– ⊲Tel – : (Γ : Tel) → Tm ⌜Γ⌝ (Ty[𝜖]) → Tel ⌜Γ ⊲Tel 𝐴⌝ :≡ ⌜Γ⌝ ⊲P Tm[𝜖,𝐴]

In the telescopic P-contextualisation model, we define empty context and context extension by

⋄Tel and ⊲Tel, and we adjust the rest of the model by adding the ⌜–⌝ operations when referring to

contexts. The sorts are thus the following:

Con :≡ Tel, Sub∆Γ :≡ SubP ⌜∆⌝ ⌜Γ⌝, Ty Γ :≡ TmP ⌜Γ⌝ (Ty[𝜖]), Tm Γ 𝐴 :≡ TmP ⌜Γ⌝ (Tm[𝜖,𝐴]).
Telescopic P-contextualisation is the same as taking the contextual core of P-contextualisation. □

What is the connection between a CwF C and a P-universe where P :≡ PSh(C)? The P-universe
is how C is visible in the presheaf model. In other words, the P-universe is the structure with which

the presheaf model is equipped when the base category is a CwF. But a PSh(C)-universe contains
less information than a CwF: it does not say that that C has a terminal object or that C supports

context extension. We make the connection between a model C and a P-universe formal by the

following definition. For convenience, we fix the model to be the syntax I.

Definition 16 (Yoneda embedding from I to a P-universe). The connection between the syntax
I : CwFΠ,Bool and its presentation as a P-universe is given by the following components. This is also
called a weak contextual isomorphism (contextual pseudo-isomorphism) from I to the contextualisation
of P. We overload y for Con, Sub, Ty and Tm.

y : ConI → ConP y (𝐴[𝛾]) ≡ y𝐴[y𝛾]
y : SubI ∆Γ � SubP (y∆) (y Γ) y : TmI Γ 𝐴 � TmP (y Γ) (Tm[𝜖, y𝐴])
y−1⋄ : SubP ⋄P (y⋄I) y−1⊲ : SubP (y Γ ⊲P Tm[𝜖, y𝐴]) (y (Γ ⊲I 𝐴))
y−1⋄ ◦ 𝜖 = id {y⋄} y−1⊲ ◦ (y p𝐼 ,P y qI) = id

y : TyI Γ � TmP (y Γ) (Ty[𝜖]) (y p𝐼 ,P y qI) ◦ y−1⊲ = id

We say that 𝜖P : SubP (y⋄I) ⋄P is an isomorphism, and similarly (y p𝐼 ,Py qI) : SubP (y (Γ ⊲I𝐴)) (y Γ ⊲P
Tm[𝜖, y𝐴]) is an isomorphism. Equation y (𝐴[𝛾]) ≡ y𝐴[y𝛾] is needed to typecheck (y p, y q).
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Problem 17. From a Yoneda embedding from I to a P-universe, we provide an isomorphism between
I and the telescopic P-contextualisation of the universe.

Construction. Yoneda actually shows that the sorts Sub, Ty and Tm are already isomorphic.

We just show that ConI is isomorphic to Tel, and transport the three Yoneda isomorphisms along

this. We will define 𝑓 : ConI � Tel in multiple steps. First we define its forward map 𝑓 mutually

with an isomorphism 𝑒 in the category ConP–SubP by induction on syntactic contexts.

𝑓 : ConI → Tel 𝑒 (Γ ⊲I 𝐴) : ⌜𝑓 Γ⌝ ⊲P Tm[𝜖, y𝐴[𝑒 Γ]] �(𝑒 Γ)
𝑒 : (Γ : ConI) → ⌜𝑓 Γ⌝ � y Γ y Γ ⊲P Tm[𝜖, y𝐴[𝑒 Γ]] [𝑒 Γ−1] =
𝑓 ⋄I :≡ ⋄Tel y Γ ⊲P Tm[𝜖, y𝐴] �(y−1⊲ )
𝑓 (Γ ⊲I 𝐴) :≡ 𝑓 Γ ⊲Tel y𝐴[𝑒 Γ]P y (Γ ⊲I 𝐴)
𝑒 ⋄I :≡ y−1⋄ : ⋄P � y⋄I
Then we define the opposite direction 𝑓 −1 and one of the round trips by mutual induction on

telescopes. Finally we prove the other round trip by induction on contexts.

𝑓 −1 : Tel → ConI 𝑓 −1 ⋄Tel :≡ ⋄I
𝑓 𝜂 : (Γ ′

: Tel) → 𝑓 (𝑓 −1 Γ ′) = Γ ′ 𝑓 −1 (Γ ′ ⊲Tel 𝐴) :≡ 𝑓 −1 Γ ′ ⊲I y−1 (𝐴[(𝑓 𝜂 Γ ′)∗ (𝑒 (𝑓 −1 Γ ′)−1)]P)
Finally we prove the other round trip 𝑓 −1 (𝑓 Γ) = Γ by induction on Γ . Thus we obtain an

isomorphism between the syntax I and the telescopic P-contextualisation of the universe Ty–Tm:

𝑓 : ConI � Tel SubI ∆Γ
y
� SubP (y∆) (y Γ)

𝑒 ∆,𝑒 Γ
� SubP ⌜𝑓 ∆⌝ ⌜𝑓 Γ⌝

TyI Γ
y
� TmP (y Γ) (Ty[𝜖])

𝑒 Γ
� TmP ⌜𝑓 Γ⌝ (Ty[𝜖])

TmI Γ 𝐴
y
� TmP (y Γ) (Tm[𝜖, y𝐴])

𝑒 Γ
� TmP ⌜𝑓 Γ⌝ (Tm[𝜖, y𝐴[𝑒 Γ]]) □

Now we just need to instantiate P and y to obtain a CwFΠ,Bool model which is isomorphic to the

syntax I. As we have seen in Section 3, P :≡ PSh(I) is not good enough, because it is not a CwFΠ .

5 SECOND ATTEMPT: STRICTER PRESHEAVES
As explained in Section 3, the CwF of presheaves does not have strict dependent products, and for

this reason, we cannot use it to instantiate the strictification construction described in Section 4.

The source of this issue is that presheaves, when defined in intensional type theory, only satisfy the

functoriality and the naturality equations up to a propositional equality; however, the definition

of dependent products makes essential use of these equations. Fortunately for us, this problem

has already been solved by Pédrot [2020] with his introduction of prefascist sets, an alternative

presentation of presheaves which is better suited for intensional type theory. In this section, we

provide a brief account Pédrot’s construction, and we replay our strictification construction using

prefascist sets instead of presheaves. The result is a fully strict CwFΠ , where all the equations that
govern the substitution calculus are definitional – except for ⊲𝜂.

5.1 The category of prefascist sets
Assume that we have a strict category C, consisting of the following fields:

Obj : U –◦– : Hom 𝑦 𝑥 → Hom 𝑧 𝑦 → Hom 𝑧 𝑥 id : Hom 𝑥 𝑥

Hom : (𝑥 𝑦 : Obj) → U ass : 𝑓 ◦ (𝑔 ◦ ℎ) ≡ (𝑓 ◦ 𝑔) ◦ ℎ idl : id ◦ 𝑓 ≡ 𝑓

idr : 𝑓 ◦ id ≡ 𝑓
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Now, assume that we want to construct the category of U-valued presheaves over C, and fur-

thermore, that we want the functoriality equations of presheaves and the naturality equations of

morphisms to be definitional. For this purpose, we can use the standard definition of presheaves

with the strict equality ≡ to obtain a category that we denote by Psh(C), but this is an external
category: its objects and its morphisms live in the outer layer of our two-level metatheory. The fun-

damental insight of prefascist sets is to analyse the external category Psh(C) through an adjunction

with the internal category of families of types indexed over Obj.

Definition 18 (Indexed families). The objects of the category UObj are indexed type families
Obj → U, morphisms between two families 𝑃 and 𝑄 are indexed functions (𝑥 : Obj) → 𝑃 𝑥 → 𝑄 𝑥 .
The identity and composition are defined pointwise, and they are strictly associative and unital.

The category UObj
fits into an adjunction diagram with the category of strict presheaves Psh(C).

Psh(C) UObj

F

U

⊣

The left adjoint functor F transforms a presheaf into an indexed family by forgetting about the

action of morphisms, and the right adjoint functor U transforms an indexed family into a presheaf

by freely adding all possible morphism actions as follows:

U(𝑃) 𝑥 :≡ {𝑦 : Obj}(𝑓 : Hom 𝑦 𝑥) → 𝑃 𝑦

where the action of morphisms on U(𝑃) is given by precomposition:

– [– ] : (𝑡 : U(𝑃) 𝑥) (𝑓 : Hom 𝑦 𝑥) → U(𝑃) 𝑦
𝑡 [𝑓 ] :≡ 𝜆 (𝑔 : Hom 𝑧 𝑦) . 𝑡 (𝑓 ◦ 𝑔)

and the functoriality laws forU(𝑃) are a consequence of the associativity and unitality of morphism

composition. The reader may easily verify that F andU are indeed adjoint functors. It follows that

the composite functor F ◦U is a comonad on the category of indexed families, which we denote

by □ : UObj → UObj
.

Lemma 19. The □ comonad encodes the equations of presheaves, in the sense that a presheaf is
exactly the same thing as a □-coalgebra – that is, a family of sets 𝑃 (the elements of the presheaf)
equipped with a morphism 𝑃 → □𝑃 (the action of morphisms on the elements) which is compatible
with the counit and comultiplication of □ (the functoriality equations).

Now, we say that a presheaf is cofree if it is of the formU(𝑃) for some indexed family 𝑃 . The class

of cofree presheaves is particularly interesting for two reasons. Firstly, the action of morphisms on

a cofree presheaf is given by composition in the category C, and since this category is definitionally
associative and unital, then it follows that the functoriality equations for cofree presheaves are

definitional too. Secondly, a natural transformation between two cofree presheaves U(𝑃) and
U(𝑄) is the same as a morphism of families □𝑃 → 𝑄 , by the adjunction between F and U. More

explicitly, given any morphism of families 𝜃 : □𝑃 → 𝑄 , we obtain a natural transformation 𝜃 ′

between U(𝑃) andU(𝑄) as follows:
𝜃 ′𝑥 : U(𝑃) 𝑥 → U(𝑄) 𝑥
𝜃 ′𝑥 (𝑡) :≡ 𝜆 (𝑓 : Hom 𝑦 𝑥) . 𝜃 𝑦 (𝑡 [𝑓 ])

The naturality equation unfolds to (𝑓 : Sub 𝑦 𝑥) (𝑔 : Sub 𝑧 𝑦) → 𝜃 𝑧 (𝑡 [𝑓 ] [𝑔]) ≡ 𝜃 𝑧 (𝑡 [𝑓 ◦ 𝑔]),
which holds definitionally becauseU(𝑃) is a strict presheaf. In summary, the category of cofree

presheaves can be defined as an internal category without needing any propositional equation, and

as a result, all of the presheaf equations hold definitionally. As a consequence, cofree presheaves
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provide a strict model of simple type theory. This is the standard interpretation of simple types in

the coKleisli category of the comonad □.
This is all and well, but we want a strict presentation of presheaves, not of a small subcategory of

presheaves – cofree presheaves are very restricted, and they do not form a model of Martin-Löf

type theory. To arrive at the construction of prefascist sets, we need a final insight, which is the

fact that every presheaf can be presented as a subcoalgebra of a cofree presheaf. Indeed, given any

presheaf 𝑃 , the unit of the adjunction 𝜂 : 𝑃 → U(F (𝑃)) is injective, and therefore it exhibits 𝑃 as

a subcoalgebra of the cofree presheaf U(F (𝑃)). This observation leads us to define a prefascist set
as a subcoalgebra of a cofree presheaf, i.e., a pair of an indexed family Γ0 : UObj

and a predicate

Γ1 : □Γ0 → Ω (where Ω is the constant family 𝜆 𝑥 . Prop):

Con : U :≡ (Γ0 : (𝑥 : Obj) → U) × (Γ1 : (𝑥 : Obj) → (∀{𝑦} (𝑓 : Hom 𝑦 𝑥) → Γ0 𝑦) → Prop)

Note that we use Con for the type of prefascist sets, as we will shortly show that prefascist sets

form a CwF. We also define the elements of a prefascist set, which are the inhabitants of □Γ0 which
satisfy Γ1, and the action of morphisms of C on these elements, which is given by composition.

El (Γ : Con) (𝑥 : Obj) : U :≡ – [– ] : (𝛾 : El Γ 𝑥) (𝑓 : Hom𝑦 𝑥) : El Γ 𝑦
(𝛾0 : ∀{𝑦}(𝑓 : Hom 𝑦 𝑥) → Γ0 𝑦) (𝛾 [𝑓 ])0 :≡ 𝜆 𝑔 .𝛾0 (𝑓 ◦ 𝑔)

× (𝛾1 : ∀{𝑦}(𝑓 : Hom𝑦 𝑥) → Γ1 𝑦 (𝜆 𝑔 . 𝑡0 (𝑓 ◦ 𝑔))) (𝛾 [𝑓 ])1 :≡ 𝜆 𝑔 .𝛾1 (𝑓 ◦ 𝑔)

Since the composition operation is definitionally associative and unital, the action of morphisms

on the elements of a prefascist set satisfies the functoriality laws up to definitional equality. We can

then define natural transformations between prefascist sets, which are coKleisli maps that preserve

the predicate, along with their action on elements.

Sub (Γ ∆ : Con) : U :≡ – • – : Sub Γ ∆ → El Γ 𝑥 → El ∆ 𝑥

(𝜎0 : ∀{𝑥}(𝛾 : El Γ 𝑥) → ∆0 𝑥) (𝜎 • 𝛾)0 :≡ 𝜆 𝑓 . 𝜎0 (𝛾 [𝑓 ])
× (𝜎1 : ∀{𝑥}(𝛾 : El Γ 𝑥) → ∆1 𝑥 (𝜆 𝑓 . 𝜎0 (𝛾 [𝑓 ]))) (𝜎 • 𝛾)1 :≡ 𝜆 𝑓 . 𝜎1 (𝛾 [𝑓 ])

The naturality equation (𝜎 • 𝛾) [𝑓 ] ≡ 𝜎 • (𝛾 [𝑓 ]) is definitional. Finally, we complete our definition

of the category of prefascist sets by defining the composition and the identity morphisms.

– ◦ – : Sub ∆ Γ → Sub Θ ∆ → Sub Θ Γ id : Sub Γ Γ

(𝜎 ◦ 𝜏)0 𝛾 :≡ 𝜎0 (𝜏 • 𝛾) id0 𝛾 :≡ 𝛾0 id
(𝜎 ◦ 𝜏)1 𝛾 :≡ 𝜎1 (𝜏 • 𝛾) id1 𝛾 :≡ 𝛾1 id

Lemma 20. The category of prefascist sets can be defined in the inner layer of our two-level metathe-
ory (and thus in our Agda formalisation). Furthermore, there is an equivalence of categories between
the category of prefascist sets Pfs(C) and the external category of strict presheaves Psh(C).

5.2 The CwF of Prefascist Sets
As we see, the category of prefascist sets on C is an alternative presentation for the category of

presheaves on C for which the functoriality and naturality equations are automatically definitional.

But the merits of prefascist sets do not stop there: Pédrot [2020] used them to construct a strict

category with families (i.e., a CwFΠ), where the contexts are prefascist sets and the substitutions

are prefascist morphisms, and the types and the terms are respectively dependent prefascist sets
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and dependent sections, defined as follows:

Ty (Γ : Con) : U :≡
(𝐴0 : {𝑥 : Obj} → (𝛾 : El Γ 𝑥) → U)

× (𝐴1 : {𝑥 : Obj} → (𝛾 : El Γ 𝑥) → (∀{𝑦} (𝑓 : Hom 𝑦 𝑥) → 𝐴0 (𝛾 [𝑓 ])) → Prop)

Tm (Γ : Con) (𝐴 : Ty Γ) : U :≡
(𝑡0 : {𝑥 : Obj} → (𝛾 : El Γ 𝑥) → 𝐴0 𝑥)

× (𝑡1 : {𝑥 : Obj} → (𝛾 : El Γ 𝑥) → 𝐴1 𝑥 (𝜆 𝑓 . 𝜎0 (𝛾 [𝑓 ])))

We also have a notion of element of a dependent prefascist set, which is indexed over an element

of the base prefascist set. We overload our notations and denote these as El as well.

El (𝐴 : Ty Γ) (𝛾 : El Γ 𝑥) : U :≡
(𝑎0 : ∀{𝑦}(𝑓 : Hom 𝑦 𝑥) → 𝐴0 (𝛾 [𝑓 ]))

× (𝑎1 : ∀{𝑦}(𝑓 : Hom𝑦 𝑥) → 𝐴1 (𝛾 [𝑓 ]) (𝜆 𝑔 . 𝑎0 (𝑓 ◦ 𝑔)))

Naturally, the morphism of C act on dependent element as well, and the action is definitionally

functorial. We now turn ourselves to a different kind of action, the action of prefascist morphisms

on dependent prefascist sets and their sections. We denote this action by – [– ]𝑃 to distinguish it

from the actions of the base category morphisms.

– [– ]𝑃 : Ty Γ → Sub ∆ Γ → Ty ∆ – [– ]𝑃 : Tm Γ 𝐴 → (𝜎 : Sub ∆ Γ) → Tm ∆ (𝐴[𝜎]𝑃 )
(𝑎[𝜎]𝑃 )0 𝛾 :≡ 𝐴0 (𝜎 • 𝛾) (𝑡 [𝜎]𝑃 )0 𝛾 :≡ 𝑡0 (𝜎 • 𝛾)
(𝐴[𝜎]𝑃 )1 𝛾 :≡ 𝐴1 (𝜎 • 𝛾) (𝑡 [𝜎]𝑃 )1 𝛾 :≡ 𝑡1 (𝜎 • 𝛾)

Unsurprisingly, this pullback operation commutes with composition and identity definitionally. We

also need a definition for context extensions in the category of prefascist sets, which is defined as a

dependent sum of prefascist sets.

– ⊲ – : (Γ : Con) → (𝐴 : Ty Γ) → Con

(Γ ⊲𝐴)0 𝑥 :≡ (𝛾 : El Γ 𝑥) ×𝐴0 𝛾

(Γ ⊲𝐴)1 𝑥 𝜃 :≡ (𝛾𝑒 : ∀ 𝑓 𝑔 → (fst (𝜃 𝑓 ))0 𝑔 = (fst (𝜃 (𝑓 ◦ 𝑔))0 id))
× (𝐴1 (𝜆 𝑓 . (fst (𝜃 𝑓 ))0 id) (𝜆 𝑓 . (𝐴0 𝛾𝑒 ) (snd (𝜃 𝑓 ))))

The resulting prefascist set is equipped with two projection operators which give rise to the p and q
combinators, and with a pairing operator which gives rise to the substitution extension combinator.

Additionally, we can form an element of Γ ⊲𝐴 over 𝑥 given an element 𝛾 : El Γ 𝑥 and a dependent

element 𝑎 : El 𝐴 𝛾 . We denote the result of this operation by (𝛾 , 𝑎).
Lastly, we define dependent products of prefascist sets as follows:

Π : (𝐴 : Ty Γ) → (𝐵 : Ty (Γ ⊲𝐴)) → Ty Γ

(Π 𝐴 𝐵)0 𝛾 :≡ (𝑎 : El 𝐴 𝛾) → 𝐵0 (𝛾 , 𝑎)
(Π 𝐴 𝐵)1 𝛾 𝜃 :≡ (𝑎 : El 𝐴 𝛾) → 𝐵1 (𝛾 , 𝑎) (𝜆 𝑓 . 𝜃 𝑓 (𝑎[𝑓 ]))

These dependent products are equipped with a function abstraction operator and an application

operator, which are a dependent generalisation of the abstraction and application in a coKleisli

category. All the laws, including 𝛽 and 𝜂, hold definitionally.
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5.3 The internal universe of syntactic types
Now, we want to instantiate the construction described in Section 4 in the CwF of prefascist sets. But

before doing so, we need to solve one last strictification problem: the construction from Section 4 is

intended for presheaves over the initial model I, which is a weak category, while the construction

of prefascist sets assumes that the base category C is a strict category. To correct this mismatch,

we can use the folklore trick of replacing a category by its image under the Yoneda embedding.

Lemma 21 ([strictifyCat.agda]). Internally to U, there exists an alternative presentation of the
syntax whose underlying category of contexts is a strict category. We denote this new CwF as I𝑠 .

construction. The contexts of I𝑠 are the same as the contexts of I, but the substitutions are
replaced by natural transformations between Yoneda-embedded contexts:

SubI𝑠 𝑥 𝑦 :≡ (𝜃 : ∀{𝑧} (𝑓 : SubI 𝑧 𝑥) → SubI 𝑧 𝑦)
× ((𝑓 : SubI 𝑧 𝑥) (𝑔 : SubI 𝑧′ 𝑧) → 𝜃 (𝑓 ◦ 𝑔) = (𝜃 𝑓 ) ◦ 𝑔)

The identity substitutions and the composition of substitutions in I𝑠 are defined as pointwise identity
and pointwise composition, respectively. Since these natural transformation consist of pairs of a

metatheoretic function and an irrelevant proof of naturality, it follows that associativity and unitality

are strict. Furthermore, the Yoneda lemma guarantees that the substitutions in I𝑠 are isomorphic to

the substitutions in 𝐼 . The rest of the structure (types, terms, etc.) is left unchanged. □

Let us write Pfs(I𝑠 ) for the CwFΠ of prefascist sets over the category of contexts of I𝑠 . Note that
I𝑠 is a category with families, which means that it is equipped with a function TyI𝑠 which assigns

a set of types to every context in I𝑠 , along with an action of substitutions on these sets of types

which is compatible with composition of substitutions and identities. In other words, TyI𝑠 is a

weak presheaf over the category of contexts of I𝑠 . This weak presheaf gives rise to a prefascist set

through the adjunctionU ⊣ F , which we denote by Ty. Similarly, the component TmI𝑠 gives rise

to a dependent prefascist set over Ty, denoted by Tm.

Ty : Ty ⋄ Tm : Ty (⋄ ⊲ Ty)
Ty0 {𝑥} 𝛾 :≡ TyI𝑠 𝑥 Tm0 {𝑥} 𝛾 :≡ TmI𝑠 𝑥 (snd (𝛾0 id))
Ty1 {𝑥} 𝛾 𝜃 :≡ ∀𝑓 → (𝜃 id) [𝑓 ] = 𝜃 𝑓 Tm1 {𝑥} 𝛾 𝑡 :≡ ∀𝑓 → (𝑡 id) [𝑓 ] = 𝑡 𝑓

Lemma 22. The pair (Ty, Tm) forms an internal universe closed under dependent products and
booleans, as described in Definition 13.

construction. The CwF combinators that exist in the base category I𝑠 give rise to operators
on this universe of syntactic terms. For instance, the Bool operator is defined as follows:

Bool : Tm ⋄ (Ty[𝜖]) Bool0 {𝑥} 𝛾 :≡ BoolI𝑠 Bool1 {𝑥} 𝛾 𝑓 :≡ Bool[]I𝑠
Remark that the weak equation Bool[]I𝑠 does play a role in this definition of “prefascist booleans”.

However, it is relegated to a coherence condition, while the computational content of substitutions

is handled by metatheoretical functions. The Π operator – and more generally all the other operators

from Definition 13 – can be defined in a similar fashion, but the coherence conditions become a bit

unwieldy when binders are involved, and we must do some reasoning on transports. This definition

is where the work really happens! But it happens once and for all in a very controlled manner,

instead of cluttering our entire proof with transport hell. □

Since (Ty, Tm) is an internal universe closed under dependent products and dependent booleans,

we can apply telescopic P-contextualisation (Problem 15) to obtain a CwFΠ,Bool. Now it only remains

to show that the result is isomorphic to I𝑠 , and thus that it is a presentation of the initial model. For
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this purpose, we need to instantiate Definition 16 with the Yoneda embedding from I𝑠 to Pfs(I𝑠 ).
(In the following definitions, we only give the proof-relevant part component of the prefascist sets,

i.e., the one with subscript 0, given that the second component plays no computational role.)

y : ConI𝑠 → Con y−1⋄ : Sub ⋄ (y⋄I𝑠 )
(y 𝑥)0 𝑦 :≡ SubI𝑠 𝑦 𝑥 (y−1⋄ )0 𝛾 :≡ 𝜖I𝑠
y : SubI𝑠 𝑥 𝑦 → Sub (y 𝑥) (y 𝑦) y−1 : Sub (y 𝑥) (y 𝑦) → SubI𝑠 𝑥 𝑦

(y 𝑓 )0 𝛾 :≡ 𝑓 ◦ (𝛾0 id) y−1 𝜎 :≡ 𝜎0 {𝑥} (𝜆 𝑓 . 𝑓 , 𝜆 𝑓 𝑔 . refl)
y : TyI𝑠 𝑥 → Tm (y 𝑥) (Ty[𝜖]) y−1 : Tm (y 𝑥) (Ty[𝜖]) → TyI𝑠 𝑥

(y 𝑎)0 𝛾 :≡ 𝑎[𝛾0 id] y−1 𝑡 :≡ 𝑡0 {𝑥} (𝜆 𝑓 . 𝑓 , 𝜆 𝑓 𝑔 . refl)
y : TmI𝑠 𝑥 𝑎 → Tm (y 𝑥) (Tm[𝜖, y 𝑎]) y−1 : Tm (y 𝑥) (Tm[𝜖, y 𝑎]) → TmI𝑠 𝑥 𝑎

(y 𝑡)0 𝛾 :≡ 𝑡 [𝛾0 id] y−1 𝑡 :≡ 𝑡0 {𝑥} (𝜆 𝑓 . 𝑓 , 𝜆 𝑓 𝑔 . refl)
y−1⊲ : Sub (y𝑥 ⊲ Tm[𝜖, y𝑎]) (y (𝑥 ⊲I𝑠 𝑎))
(y−1⊲ )0 𝛾 :≡ (fst (𝛾0 id))0 id , snd (𝛾0 id)

The reader may check for themselves that these definitions satisfy all the equations that appear

in Definition 16. It follows that the CwFΠ,Bool that we obtained by telescopic P-contextualisation

(which we denote by I𝑠𝑠 ) is isomorphic to I𝑠 , and therefore, that it is isomorphic to I. In particular, we

can transport the induction principle for I along this isomorphism to obtain an induction principle

for I𝑠𝑠 . This substitution-strict model, along with its induction principle, is our strictified syntax.
The isomorphism is formalised in [strictifyIso.agda], although the formal proof is slightly different

from the argument that we presented.

6 APPLICATION: CANONICITY BY GLUING
As an application for our strictification construction, we present a short and elegant proof of

canonicity for dependent type theory. This is the first time a proof by gluing over the initial

category with families is fully formalised in intensional type theory.

Theorem 23 (Boolean canonicity, [canon.agda]). In the initial CwF, every term of type Bool in
the empty context is equal to either true or false.

Proof. Using the results of Section 5, we may safely assume that the initial CwF is substitution-

strict. The idea of the proof is to construct a glued model 𝐺 which equips the syntax with proof-

relevant predicates: the contexts of 𝐺 are pairs of a syntactic context Γ and a predicate on the

closing substitutions from ⋄ to Γ ; the types are pairs of a syntactic type 𝐴 and a predicate over the

closed terms of 𝐴; the terms are pairs of a syntactic term and a proof of the predicate associated

with its type. More formally, the glued model is defined as follows:

Con𝐺 :≡ (Γ : Con) × (Sub ⋄ Γ → U)
Sub𝐺 (Γ , Γ ′) (∆,∆′) :≡ (𝜎 : Sub Γ ∆) × ((𝛾 : Sub ⋄ Γ) → (𝛾 ′ : Γ ′ 𝛾) → ∆′ (𝜎 ◦ 𝛾))
(𝜎, 𝜎 ′) ◦𝐺 (𝜏, 𝜏 ′) :≡ (𝜎 ◦ 𝜏 , 𝜆 𝛾 𝛾 ′ . 𝜎 ′ (𝜏 ◦ 𝛾) (𝜏 ′ 𝛾 𝛾 ′))
id𝐺 :≡ (id , 𝜆 𝛾 𝛾 ′ . 𝛾 ′)
⋄𝐺 :≡ (⋄ , 𝜆 𝛾 .Unit)
𝜖𝐺 :≡ (𝜖 , 𝜆 𝛾 𝛾 ′ . unit)
Ty𝐺 (Γ , Γ ′) :≡ (𝐴 : Ty Γ) × ((𝛾 : Sub ⋄ Γ) → (𝛾 ′ : Γ ′ 𝛾) → (Tm ⋄ 𝐴[𝛾]) → U)
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(𝐴,𝐴′) [(𝜎, 𝜎 ′)] :≡ (𝐴[𝜎] , 𝜆 𝛾 𝛾 ′ 𝑎 .𝐴′ (𝜎 ◦ 𝛾) (𝜎 ′ 𝛾 𝛾 ′) 𝑎)
Tm𝐺 (Γ , Γ ′) (𝐴,𝐴′) :≡ (𝑡 : Tm Γ 𝐴) × ((𝛾 : Sub ⋄ Γ) → (𝛾 ′ : Γ ′ 𝛾) → 𝐴′ 𝛾 𝛾 ′ 𝑎[𝛾])
(𝑡, 𝑡 ′) [(𝜎, 𝜎 ′)] :≡ (𝑡 [𝜎] , 𝜆 𝛾 𝛾 ′ . 𝑎′ (𝜎 ◦ 𝛾) (𝜎 ′ 𝛾 𝛾 ′))
(Γ , Γ ′) ⊲𝐺 (𝐴,𝐴′) :≡ (Γ ⊲𝐴 , 𝜆 𝜃 . (𝛾 ′ : Γ ′ (p ◦ 𝜃 )) × (𝐴′ (p ◦ 𝜃 ) 𝛾 ′ q[𝜃 ]))
(𝜎, 𝜎 ′) ,𝐺 (𝑡, 𝑡 ′) :≡ ((𝜎 , 𝑡) , 𝜆 𝛾 𝛾 ′ . (𝜎 𝛾 𝛾 ′ , 𝑎′ 𝛾 𝛾 ′))
p𝐺 :≡ (p , 𝜆 𝜃 𝜃 ′ . fst𝜃 ′)
q𝐺 :≡ (q , 𝜆 𝜃 𝜃 ′ . snd𝜃 ′)

Thanks to the strictness of the syntax, all CwF equations hold definitionally for 𝐺 . It is remarkable

that the definition is very compact and transparent with a strict initial model, yet almost impossible

to write down with a weak initial model. For reasons of space, here we only listed the CwF core,

but𝐺 also supports dependent products and booleans, following the definitions in [Coquand 2019].

In particular, the gluing predicate which is associated to the booleans is Bool′ :≡ 𝜆 𝛾 𝛾 ′ 𝑏 . (𝑏 =

true) + (𝑏 = false). Now, remark that the first projection 𝜋1 is a morphism of CwFs from 𝐺 to

the initial model – in other words, 𝐺 is displayed over the initial model. By initiality, there is a

morphism init which goes in the opposite direction, and furthermore we have that 𝜋1 ◦ init = id.
As a consequence, given any boolean 𝑏 defined in the empty context, we have that init(𝑏) yields a
proof of Bool′ 𝜖 unit 𝑏, that is, a proof that 𝑏 is canonical. □

7 CONCLUSIONS AND FURTHERWORK
In this paper, we identified and overcame the biggest issue in formalising type theory in an abstract,

intrinsic way: the weak substitution calculus. We developed a method to replace the substitution

calculus in the syntax with one coming from strict presheaves. This provides a new syntax where all

substitution laws and equations concerning variables/weakenings are definitional. We demonstrated

practicality of our method by formalising it in Agda for a type theory with Π and Bool. In our

formalisation, for the first time, we proved canonicity in a gluing-style way, and this proof is as

short and elegant as the pen and paper proofs. The formalisation does not rely on any special

feature of the metatheory (except QIITs which are unavoidable for intrinsic quotiented syntax).

Our strictification method is generic, it works for type theories with any choice of type formers,

including type theories with no canonicity or normalisation. More generally, we see no problem in

applying it to any non-substructural language defined as a SOGAT.

However, as of now, our approach has its downsides: we were not able to do actual computations

because Agda loops when trying to compute a nontrivial boolean via the canonicity proof. Reasons

for this could be that prefascist internal term representations are very big and that the implemen-

tation of OTT via rewrite rules is too slow. We also have ergonomic problems: lots of implicit

arguments have to be specified by hand in the strict syntax, and error messages become difficult to

read. Maybe these can be overcome by clever library implementations, or we might need extra proof

assistant support – in the latter case, our development can be seen as a theoretical underpinning of

proof assistants with SOGAT support. This would mean that for any SOGAT, a first-order syntax

with strict substitution calculus is available. Even if practical issues are addressed, our approach

has a theoretical downside: because of the higher-order representation of the new syntax, we lose

most definitional computation rules of the induction principle (they still hold propositionally). The

exact computational content of our construction has to be analysed further.

In the future, we plan to implement our method in Coq’s OTT extension, and investigate whether

it can be replayed in a setting without Prop. Also, we would like to see how the approach scales:

can it be used to formalise realistic type theories with (co)inductive types, hierarchies of universes,

and so on. Can intrinsic quotiented syntax be used in an implementation of a proof assistant?
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𝑃 [⟨𝑢⟩] [𝛾] =( [◦])
𝑃 [⟨𝑢⟩ ◦ 𝛾] ≡
𝑃 [(id, [id]∗ 𝑢) ◦ 𝛾] =(,◦)
𝑃 [id ◦ 𝛾, [◦]∗ (( [id]∗ 𝑢) [𝛾])] =(1)
𝑃 [id ◦ 𝛾, [◦]∗ ( [id]∗ (𝑢 [𝛾]))] =(idl)
𝑃 [𝛾, idl∗ ( [◦]∗ ( [id]∗ (𝑢 [𝛾])))] =(·∗)
𝑃 [𝛾, ( [id] · [◦] · idl)∗ (𝑢 [𝛾])] ≡
𝑃 [𝛾,𝑢 [𝛾]] ≡
𝑃 [𝛾, ( [id] · [id])∗ (𝑢 [𝛾])] =(·∗)
𝑃 [𝛾, [id]∗ ( [id]∗ (𝑢 [𝛾]))] =(⊲𝛽2)
𝑃 [𝛾, [id]∗ (( [◦] · ⊲𝛽1)∗ (q[⟨𝑢 [𝛾]⟩]))] ≡
𝑃 [𝛾, [id]∗ (( [◦] · [◦] · ass · ⊲𝛽1 · idr · [id])∗ (q[⟨𝑢 [𝛾]⟩]))] =(·∗)
𝑃 [𝛾, ( [◦] · [◦] · ass · ⊲𝛽1 · idr · [id] · [id])∗ (q[⟨𝑢 [𝛾]⟩])] ≡
𝑃 [𝛾, ( [◦] · [◦] · ass · ⊲𝛽1 · idr)∗ (q[⟨𝑢 [𝛾]⟩])] =(·∗)
𝑃 [𝛾, idr∗ (⊲𝛽1∗ (ass∗ ( [◦]∗ ( [◦]∗ (q[⟨𝑢 [𝛾]⟩])))))] =(idr)
𝑃 [𝛾 ◦ id, ⊲𝛽1∗ (ass∗ ( [◦]∗ ( [◦]∗ (q[⟨𝑢 [𝛾]⟩]))))] =(⊲𝛽1)
𝑃 [𝛾 ◦ (p ◦ ⟨𝑢 [𝛾]⟩), ass∗ ( [◦]∗ ( [◦]∗ (q[⟨𝑢 [𝛾]⟩])))] =(ass)
𝑃 [(𝛾 ◦ p) ◦ ⟨𝑢 [𝛾]⟩, [◦]∗ ( [◦]∗ (q[⟨𝑢 [𝛾]⟩]))] =(1)
𝑃 [(𝛾 ◦ p) ◦ ⟨𝑢 [𝛾]⟩, [◦]∗ (( [◦]∗ q) [⟨𝑢 [𝛾]⟩])] =(,◦)
𝑃 [(𝛾 ◦ p, [◦]∗ q) ◦ ⟨𝑢 [𝛾]⟩] ≡
𝑃 [(𝛾 ◦ p, [◦]∗ q) ◦ ⟨(Bool[] · Bool[])∗ (𝑢 [𝛾])⟩] =(·∗)
𝑃 [(𝛾 ◦ p, [◦]∗ q) ◦ ⟨Bool[]∗ (Bool[]∗ (𝑢 [𝛾]))⟩] =(3)
𝑃 [(𝛾 ◦ p, [◦]∗ q) ◦ Bool[]∗ ⟨Bool[]∗ (𝑢 [𝛾])⟩] =(2)
𝑃 [(Bool[]∗ (𝛾 ◦ p, [◦]∗ q)) ◦ ⟨Bool[]∗ (𝑢 [𝛾])⟩] ≡
𝑃 [(Bool[]∗ (𝛾↑)) ◦ ⟨Bool[]∗ (𝑢 [𝛾])⟩] =( [◦])
𝑃 [Bool[]∗ (𝛾↑)] [⟨Bool[]∗ (𝑢 [𝛾])⟩]

Fig. 1. Proof of 𝛼 (𝑢 : Tm Γ Bool) : 𝑃 [⟨𝑢⟩] [𝛾] = 𝑃 [Bool[]∗ (𝛾↑)] [⟨Bool[]∗ (𝑢 [𝛾])⟩]. This 𝛼 used in Definition
4, in the rule itet [].
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