
record CwF {i}{j}{k}{l} : Set (lsuc (i ⊔ j ⊔ k ⊔ l)) where
  field
    Con      : Set i
    Sub      : Con � Con � Set j
    _∘_      : ∀{Γ Δ} � Sub Δ Γ � ∀{Θ} � Sub Θ Δ � Sub Θ Γ
    ass      : ∀{Γ Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ}{Ξ}{θ : Sub Ξ Θ} � ((γ ∘ δ
    id       : ∀{Γ} � Sub Γ Γ
    idl      : ∀{Γ Δ}{γ : Sub Δ Γ} � (id ∘ γ) ~ γ
    idr      : ∀{Γ Δ}{γ : Sub Δ Γ} � (γ ∘ id) ~ γ
    ◇        : Con
    ε        : ∀{Γ} � Sub Γ ◇
    ◇η       : ∀{Γ}{σ : Sub Γ ◇} � σ ~ (ε {Γ})
    Ty       : Con � Set k
    _[_]T    : ∀{Γ} � Ty Γ � ∀{Δ} � Sub Δ Γ � Ty Δ
    [∘]T     : ∀{Γ}{A : Ty Γ}{Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ} � A [ γ ∘ δ ]T
    [id]T    : ∀{Γ}{A : Ty Γ} � A [ id ]T ~ A
    Tm       : (Γ : Con) � Ty Γ � Set l
    _[_]t    : ∀{Γ}{A : Ty Γ} � Tm Γ A � ∀{Δ}(γ : Sub Δ Γ) � Tm Δ (A [ γ ]T)
    [∘]t     : ∀{Γ}{A : Ty Γ}{a : Tm Γ A}{Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ} � 
    [id]t    : ∀{Γ}{A : Ty Γ}{a : Tm Γ A} � a [ id ]t ~ a
    _▹_      : (Γ : Con) � Ty Γ � Con
    _,[_]_   : ∀{Γ Δ}(γ : Sub Δ Γ) � ∀ {A A'} � A [ γ ]T ~ A' � Tm Δ A' � Su
    p        : ∀{Γ A} � Sub (Γ ▹ A) Γ
    q        : ∀{Γ A} � Tm (Γ ▹ A) (A [ p ]T)
    ▹β₁      : ∀{Γ Δ}{γ : Sub Δ Γ}{A}{a : Tm Δ (A [ γ ]T)} � p ∘ (γ ,[ ~refl
    ▹β₂      : ∀{Γ Δ}{γ : Sub Δ Γ}{A}{a : Tm Δ (A [ γ ]T)} � q [ γ ,[ ~refl 
    ▹η       : ∀{Γ Δ A}{γa : Sub Δ (Γ ▹ A)} � ((p ∘ γa) ,[ [∘]T ] (q [ γa ]tAmbrus Kaposi, Loïc Pujet 21 february 2025

Strictifying
Categories with

Families



Today's menu

Formalising normalisation proofs for dependent type theory

∼ with a side of gluing ∼

2



Today's menu

Formalising normalisation proofs for dependent type theory
∼ with a side of gluing ∼

2



I.

Introduction

3



Why bother proving normalisation?

Dependent type theory is a popular foundation for proof assistants:
Agda, Coq/Rocq, Lean...

It incorporates computation within the logical foundations

▶ Mathematical objects are considered up to 𝛽𝜂-equality
▶ Mathematical constructions are programs!

→ The problem of type-checking is now intrinsically linked with
computation.

4



Why bother proving normalisation?

Dependent type theory is a popular foundation for proof assistants:
Agda, Coq/Rocq, Lean...

It incorporates computation within the logical foundations

▶ Mathematical objects are considered up to 𝛽𝜂-equality
▶ Mathematical constructions are programs!

→ The problem of type-checking is now intrinsically linked with
computation.

4



Why bother proving normalisation?

Dependent type theory is a popular foundation for proof assistants:
Agda, Coq/Rocq, Lean...

It incorporates computation within the logical foundations

▶ Mathematical objects are considered up to 𝛽𝜂-equality
▶ Mathematical constructions are programs!

→ The problem of type-checking is now intrinsically linked with
computation.

4



Why bother proving normalisation?

Dependent type theory is a popular foundation for proof assistants:
Agda, Coq/Rocq, Lean...

It incorporates computation within the logical foundations

▶ Mathematical objects are considered up to 𝛽𝜂-equality
▶ Mathematical constructions are programs!

→ The problem of type-checking is now intrinsically linked with
computation.

4



Why bother proving normalisation?

Dependent type theory is a popular foundation for proof assistants:
Agda, Coq/Rocq, Lean...

It incorporates computation within the logical foundations

▶ Mathematical objects are considered up to 𝛽𝜂-equality
▶ Mathematical constructions are programs!

→ The problem of type-checking is now intrinsically linked with
computation.

4



Why bother proving normalisation?

Normalisation property:

Every well-typed terms reduce to a normal form, and the
𝛽𝜂-equality of terms corresponds to the syntactical equality of
normal forms.

5



Road to normalisation

▶ First, we define a calculus of untyped terms:

Λ ∶= 𝑥 | 𝑡 𝑢 | 𝜆 𝑥 . 𝑡 | ...

▶ Then we define a family of typing judgments

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑡 𝑢 ∶ 𝐴 ...

which are inductively generated by typing rules:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆 𝑥 . 𝑡 ∶ Π (𝑥 ∶ 𝐴) . 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

...

6



Road to normalisation

▶ First, we define a calculus of untyped terms:

Λ ∶= 𝑥 | 𝑡 𝑢 | 𝜆 𝑥 . 𝑡 | ...

▶ Then we define a family of typing judgments

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑡 𝑢 ∶ 𝐴 ...

which are inductively generated by typing rules:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆 𝑥 . 𝑡 ∶ Π (𝑥 ∶ 𝐴) . 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

...

6



Road to normalisation

▶ First, we define a calculus of untyped terms:

Λ ∶= 𝑥 | 𝑡 𝑢 | 𝜆 𝑥 . 𝑡 | ...

▶ Then we define a family of typing judgments

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑡 𝑢 ∶ 𝐴 ...

which are inductively generated by typing rules:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆 𝑥 . 𝑡 ∶ Π (𝑥 ∶ 𝐴) . 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

...

6



Road to normalisation

▶ First, we define a calculus of untyped terms:

Λ ∶= 𝑥 | 𝑡 𝑢 | 𝜆 𝑥 . 𝑡 | ...

▶ Then we define a family of typing judgments

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑡 𝑢 ∶ 𝐴 ...

which are inductively generated by typing rules:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆 𝑥 . 𝑡 ∶ Π (𝑥 ∶ 𝐴) . 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

...

6



Proving normalisation

▶ If we want to prove a metatheoretical property of well-typed
terms, our only option is induction on typing derivations

▶ For complex properties, a naive induction will not go through:
we must strengthen the induction hypothesis

▶ The standard tool for this is logical relations

7



Proving normalisation

▶ If we want to prove a metatheoretical property of well-typed
terms, our only option is induction on typing derivations

▶ For complex properties, a naive induction will not go through:
we must strengthen the induction hypothesis

▶ The standard tool for this is logical relations

7



Proving normalisation

▶ If we want to prove a metatheoretical property of well-typed
terms, our only option is induction on typing derivations

▶ For complex properties, a naive induction will not go through:
we must strengthen the induction hypothesis

▶ The standard tool for this is logical relations

7



Logical relations in two seconds

▶ A reducible integer is a normalising term of type N

▶ A reducible function of type 𝐴 → 𝐵 sends reducible terms of
type 𝐴 to reducible terms of type 𝐵

▶ A reducible term of type 𝐴 × 𝐵 has a first projection that is
reducible of type 𝐴 and a second projection that is reducible of
type 𝐵

▶ A reducible term of type U...

8



Logical relations in two seconds

▶ A reducible integer is a normalising term of type N

▶ A reducible function of type 𝐴 → 𝐵 sends reducible terms of
type 𝐴 to reducible terms of type 𝐵

▶ A reducible term of type 𝐴 × 𝐵 has a first projection that is
reducible of type 𝐴 and a second projection that is reducible of
type 𝐵

▶ A reducible term of type U...

8



Logical relations in two seconds

▶ A reducible integer is a normalising term of type N

▶ A reducible function of type 𝐴 → 𝐵 sends reducible terms of
type 𝐴 to reducible terms of type 𝐵

▶ A reducible term of type 𝐴 × 𝐵 has a first projection that is
reducible of type 𝐴 and a second projection that is reducible of
type 𝐵

▶ A reducible term of type U...

8



Logical relations in two seconds

▶ A reducible integer is a normalising term of type N

▶ A reducible function of type 𝐴 → 𝐵 sends reducible terms of
type 𝐴 to reducible terms of type 𝐵

▶ A reducible term of type 𝐴 × 𝐵 has a first projection that is
reducible of type 𝐴 and a second projection that is reducible of
type 𝐵

▶ A reducible term of type U...

8



The devil is in the details

▶ Reducibility must be generalised to contexts and substitutions

▶ We must account for conversion
→ Reducibility predicates should really be partial

equivalence relations (PERs) on terms

▶ We must account for free variables
→ Reducibility PERs should contain the PER of neutral terms

▶ We must account for weakening
→ Reducibility PERs should really be presheaves of PERs

9



The devil is in the details

▶ Reducibility must be generalised to contexts and substitutions

▶ We must account for conversion
→ Reducibility predicates should really be partial

equivalence relations (PERs) on terms

▶ We must account for free variables
→ Reducibility PERs should contain the PER of neutral terms

▶ We must account for weakening
→ Reducibility PERs should really be presheaves of PERs

9



The devil is in the details

▶ Reducibility must be generalised to contexts and substitutions

▶ We must account for conversion
→ Reducibility predicates should really be partial

equivalence relations (PERs) on terms

▶ We must account for free variables
→ Reducibility PERs should contain the PER of neutral terms

▶ We must account for weakening
→ Reducibility PERs should really be presheaves of PERs

9



The devil is in the details

▶ Reducibility must be generalised to contexts and substitutions

▶ We must account for conversion
→ Reducibility predicates should really be partial

equivalence relations (PERs) on terms

▶ We must account for free variables
→ Reducibility PERs should contain the PER of neutral terms

▶ We must account for weakening
→ Reducibility PERs should really be presheaves of PERs

9



Taming the devil with boilerplate

All these subtleties result in long, technical and error-prone proofs.

→ good candidate for formalisation!

▶ Barras, Werner, "Coq in Coq" (1997)

▶ Barras, "Intuitionistic Set Theory and Type Theories with Inductive Families"
(2012)

▶ Wieczorek, Biernacki, "A Coq Formalization of Normalization by Evaluation
for Martin-Löf Type Theory" (2018)

▶ Abel, Öhman, Vezzosi, "Decidability of conversion for type theory in type
theory" (2018)

▶ Adjedj, Lennon-Bertrand, Maillard, Pédrot, P., "Martin-Löf à la coq" (2023)

10



Taming the devil with boilerplate

All these subtleties result in long, technical and error-prone proofs.

→ good candidate for formalisation!

▶ Barras, Werner, "Coq in Coq" (1997)

▶ Barras, "Intuitionistic Set Theory and Type Theories with Inductive Families"
(2012)

▶ Wieczorek, Biernacki, "A Coq Formalization of Normalization by Evaluation
for Martin-Löf Type Theory" (2018)

▶ Abel, Öhman, Vezzosi, "Decidability of conversion for type theory in type
theory" (2018)

▶ Adjedj, Lennon-Bertrand, Maillard, Pédrot, P., "Martin-Löf à la coq" (2023)

10



Taming the devil with boilerplate

All these subtleties result in long, technical and error-prone proofs.

→ good candidate for formalisation!

▶ Barras, Werner, "Coq in Coq" (1997)

▶ Barras, "Intuitionistic Set Theory and Type Theories with Inductive Families"
(2012)

▶ Wieczorek, Biernacki, "A Coq Formalization of Normalization by Evaluation
for Martin-Löf Type Theory" (2018)

▶ Abel, Öhman, Vezzosi, "Decidability of conversion for type theory in type
theory" (2018)

▶ Adjedj, Lennon-Bertrand, Maillard, Pédrot, P., "Martin-Löf à la coq" (2023)

10



II.

Gluing? Quésaco?

11



The algebraist's approach

Instead of reasoning on syntax, we shift our focus to a well-behaved
category of models. For dependent type theory, a common option is
Categories with Families (CwF)

A category with families is the data of:

▶ A category of contexts and subtitutions

▶ For every context Γ, a set of types Ty Γ
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Ty Γ → Ty Δ
▶ For every context Γ and type 𝐴, a set of terms Tm Γ 𝐴
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Tm Γ 𝐴 → Tm Δ 𝐴[𝜎]
▶ Context extensions Γ ▷ 𝐴, context projections wk ∶ Γ ▷ 𝐴 → Γ

and var0 ∶ Tm (Γ ▷ 𝐴) (𝐴[wk])
▶ and more...

12



The algebraist's approach

Instead of reasoning on syntax, we shift our focus to a well-behaved
category of models. For dependent type theory, a common option is
Categories with Families (CwF)

A category with families is the data of:

▶ A category of contexts and subtitutions

▶ For every context Γ, a set of types Ty Γ
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Ty Γ → Ty Δ
▶ For every context Γ and type 𝐴, a set of terms Tm Γ 𝐴
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Tm Γ 𝐴 → Tm Δ 𝐴[𝜎]
▶ Context extensions Γ ▷ 𝐴, context projections wk ∶ Γ ▷ 𝐴 → Γ

and var0 ∶ Tm (Γ ▷ 𝐴) (𝐴[wk])
▶ and more...

12



The algebraist's approach

Instead of reasoning on syntax, we shift our focus to a well-behaved
category of models. For dependent type theory, a common option is
Categories with Families (CwF)

A category with families is the data of:

▶ A category of contexts and subtitutions

▶ For every context Γ, a set of types Ty Γ
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Ty Γ → Ty Δ
▶ For every context Γ and type 𝐴, a set of terms Tm Γ 𝐴
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Tm Γ 𝐴 → Tm Δ 𝐴[𝜎]
▶ Context extensions Γ ▷ 𝐴, context projections wk ∶ Γ ▷ 𝐴 → Γ

and var0 ∶ Tm (Γ ▷ 𝐴) (𝐴[wk])
▶ and more...

12



The algebraist's approach

Instead of reasoning on syntax, we shift our focus to a well-behaved
category of models. For dependent type theory, a common option is
Categories with Families (CwF)

A category with families is the data of:

▶ A category of contexts and subtitutions

▶ For every context Γ, a set of types Ty Γ
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Ty Γ → Ty Δ
▶ For every context Γ and type 𝐴, a set of terms Tm Γ 𝐴
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Tm Γ 𝐴 → Tm Δ 𝐴[𝜎]
▶ Context extensions Γ ▷ 𝐴, context projections wk ∶ Γ ▷ 𝐴 → Γ

and var0 ∶ Tm (Γ ▷ 𝐴) (𝐴[wk])

▶ and more...

12



The algebraist's approach

Instead of reasoning on syntax, we shift our focus to a well-behaved
category of models. For dependent type theory, a common option is
Categories with Families (CwF)

A category with families is the data of:

▶ A category of contexts and subtitutions

▶ For every context Γ, a set of types Ty Γ
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Ty Γ → Ty Δ
▶ For every context Γ and type 𝐴, a set of terms Tm Γ 𝐴
▶ For every subst. 𝜎 ∶ Δ → Γ, a function Tm Γ 𝐴 → Tm Δ 𝐴[𝜎]
▶ Context extensions Γ ▷ 𝐴, context projections wk ∶ Γ ▷ 𝐴 → Γ

and var0 ∶ Tm (Γ ▷ 𝐴) (𝐴[wk])
▶ and more...

12



Syntax without syntax

The point is, CwFs are presented by an algebraic theory with sorts,
terms and equations.

General theorems ensure the existence of an initial CwF
This initial model is the

''syntax''

(intrinsically well-typed terms quotiented by conversion.)

13



Syntax without syntax

The point is, CwFs are presented by an algebraic theory with sorts,
terms and equations.

General theorems ensure the existence of an initial CwF
This initial model is the

''syntax''

(intrinsically well-typed terms quotiented by conversion.)

13



Syntax without syntax

The point is, CwFs are presented by an algebraic theory with sorts,
terms and equations.

General theorems ensure the existence of an initial CwF
This initial model is the syntax!

''syntax''

(intrinsically well-typed terms quotiented by conversion.)

13



Syntax without syntax

The point is, CwFs are presented by an algebraic theory with sorts,
terms and equations.

General theorems ensure the existence of an initial CwF
This initial model is the ''syntax''

(intrinsically well-typed terms quotiented by conversion.)

13



Moving the goalposts

We can reformulate most meta-theoretical properties to be about
the initial CwF, without needing to mention raw terms.

▶ The initial CwF satisfies canonicity for booleans if any closed
inhabitant of B is convertible to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

▶ In order to talk about normalisation, we first need to define the
set of normal forms of type 𝐴 for any type 𝐴.

Then, the initial CwF satisfies normalisation if any (possibly
open) term of 𝐴 is convertible to a normal form of of type 𝐴.

Assuming the equality of normal forms is decidable and the
proof is constructive, this is enough to obtain decidability of
typechecking.

14



Moving the goalposts

We can reformulate most meta-theoretical properties to be about
the initial CwF, without needing to mention raw terms.

▶ The initial CwF satisfies canonicity for booleans if any closed
inhabitant of B is convertible to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

▶ In order to talk about normalisation, we first need to define the
set of normal forms of type 𝐴 for any type 𝐴.

Then, the initial CwF satisfies normalisation if any (possibly
open) term of 𝐴 is convertible to a normal form of of type 𝐴.

Assuming the equality of normal forms is decidable and the
proof is constructive, this is enough to obtain decidability of
typechecking.

14



Moving the goalposts

We can reformulate most meta-theoretical properties to be about
the initial CwF, without needing to mention raw terms.

▶ The initial CwF satisfies canonicity for booleans if any closed
inhabitant of B is convertible to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

▶ In order to talk about normalisation, we first need to define the
set of normal forms of type 𝐴 for any type 𝐴.

Then, the initial CwF satisfies normalisation if any (possibly
open) term of 𝐴 is convertible to a normal form of of type 𝐴.

Assuming the equality of normal forms is decidable and the
proof is constructive, this is enough to obtain decidability of
typechecking.

14



Moving the goalposts

We can reformulate most meta-theoretical properties to be about
the initial CwF, without needing to mention raw terms.

▶ The initial CwF satisfies canonicity for booleans if any closed
inhabitant of B is convertible to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

▶ In order to talk about normalisation, we first need to define the
set of normal forms of type 𝐴 for any type 𝐴.

Then, the initial CwF satisfies normalisation if any (possibly
open) term of 𝐴 is convertible to a normal form of of type 𝐴.

Assuming the equality of normal forms is decidable and the
proof is constructive, this is enough to obtain decidability of
typechecking.

14



Moving the goalposts

We can reformulate most meta-theoretical properties to be about
the initial CwF, without needing to mention raw terms.

▶ The initial CwF satisfies canonicity for booleans if any closed
inhabitant of B is convertible to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

▶ In order to talk about normalisation, we first need to define the
set of normal forms of type 𝐴 for any type 𝐴.

Then, the initial CwF satisfies normalisation if any (possibly
open) term of 𝐴 is convertible to a normal form of of type 𝐴.

Assuming the equality of normal forms is decidable and the
proof is constructive, this is enough to obtain decidability of
typechecking.

14



The algebraist revisits reducibility

In order to prove properties of the initial CwF, we ditch logical
relations for a newer and fancier tool: gluing

𝑀𝑔𝑙𝑢𝑒

0𝐶𝑤𝐹

𝜋 !

𝑀𝑔𝑙𝑢𝑒 is the glued model, whose types are pairs of a type

𝐴 of 0𝐶𝑤𝐹 and a "reducibility structure" 𝐴 → 𝑆𝑒𝑡

𝜋 is the first projection

Initiality ensures that 𝜋 has a section, which associates
a proof of reducibility to any object of 0𝐶𝑤𝐹.

15



The algebraist revisits reducibility

In order to prove properties of the initial CwF, we ditch logical
relations for a newer and fancier tool: gluing

𝑀𝑔𝑙𝑢𝑒

0𝐶𝑤𝐹

𝜋 !

𝑀𝑔𝑙𝑢𝑒 is the glued model, whose types are pairs of a type

𝐴 of 0𝐶𝑤𝐹 and a "reducibility structure" 𝐴 → 𝑆𝑒𝑡

𝜋 is the first projection

Initiality ensures that 𝜋 has a section, which associates
a proof of reducibility to any object of 0𝐶𝑤𝐹.

15



The algebraist revisits reducibility

In order to prove properties of the initial CwF, we ditch logical
relations for a newer and fancier tool: gluing

𝑀𝑔𝑙𝑢𝑒

0𝐶𝑤𝐹

𝜋 !

𝑀𝑔𝑙𝑢𝑒 is the glued model, whose types are pairs of a type

𝐴 of 0𝐶𝑤𝐹 and a "reducibility structure" 𝐴 → 𝑆𝑒𝑡

𝜋 is the first projection

Initiality ensures that 𝜋 has a section, which associates
a proof of reducibility to any object of 0𝐶𝑤𝐹.

15



The algebraist revisits reducibility

In order to prove properties of the initial CwF, we ditch logical
relations for a newer and fancier tool: gluing

𝑀𝑔𝑙𝑢𝑒

0𝐶𝑤𝐹

𝜋 !

𝑀𝑔𝑙𝑢𝑒 is the glued model, whose types are pairs of a type

𝐴 of 0𝐶𝑤𝐹 and a "reducibility structure" 𝐴 → 𝑆𝑒𝑡

𝜋 is the first projection

Initiality ensures that 𝜋 has a section, which associates
a proof of reducibility to any object of 0𝐶𝑤𝐹.

15



The algebraist revisits reducibility

In order to prove properties of the initial CwF, we ditch logical
relations for a newer and fancier tool: gluing

𝑀𝑔𝑙𝑢𝑒

0𝐶𝑤𝐹

𝜋 !

𝑀𝑔𝑙𝑢𝑒 is the glued model, whose types are pairs of a type

𝐴 of 0𝐶𝑤𝐹 and a "reducibility structure" 𝐴 → 𝑆𝑒𝑡

𝜋 is the first projection

Initiality ensures that 𝜋 has a section, which associates
a proof of reducibility to any object of 0𝐶𝑤𝐹.

15



The algebraist revisits reducibility

In the end, this is still a form of induction.

But instead of using PERs on raw syntax, we use proof-relevant
predicates on well-typed syntax quotiented by conversion.

The resulting proof is arguably more principled and cleaner

...at least
on paper!

16



The algebraist revisits reducibility

In the end, this is still a form of induction.

But instead of using PERs on raw syntax, we use proof-relevant
predicates on well-typed syntax quotiented by conversion.

The resulting proof is arguably more principled and cleaner

...at least
on paper!

16



The algebraist revisits reducibility

In the end, this is still a form of induction.

But instead of using PERs on raw syntax, we use proof-relevant
predicates on well-typed syntax quotiented by conversion.

The resulting proof is arguably more principled and cleaner

...at least
on paper!

16



The algebraist revisits reducibility

In the end, this is still a form of induction.

But instead of using PERs on raw syntax, we use proof-relevant
predicates on well-typed syntax quotiented by conversion.

The resulting proof is arguably more principled and cleaner...at least
on paper!

16



III.

Gluing in a proof assistant

17



Extensionality in type theory

First obstacle:

In order to formalise a proof of normalisation by gluing, we need
quotient types, and function extensionality...both of which are
problematic in dependent type theory.

Postulating function extensionality blocks computation

match (funext 𝑒) with
| refl => 𝑡  ???

However, we really wanted to extract an algorithm from our proof!

18



Extensionality in type theory

First obstacle:

In order to formalise a proof of normalisation by gluing, we need
quotient types, and function extensionality

...both of which are
problematic in dependent type theory.

Postulating function extensionality blocks computation

match (funext 𝑒) with
| refl => 𝑡  ???

However, we really wanted to extract an algorithm from our proof!

18



Extensionality in type theory

First obstacle:

In order to formalise a proof of normalisation by gluing, we need
quotient types, and function extensionality...both of which are
problematic in dependent type theory.

Postulating function extensionality blocks computation

match (funext 𝑒) with
| refl => 𝑡  ???

However, we really wanted to extract an algorithm from our proof!

18



Extensionality in type theory

First obstacle:

In order to formalise a proof of normalisation by gluing, we need
quotient types, and function extensionality...both of which are
problematic in dependent type theory.

Postulating function extensionality blocks computation

match (funext 𝑒) with
| refl => 𝑡  ???

However, we really wanted to extract an algorithm from our proof!

18



Extensionality in type theory

First obstacle:

In order to formalise a proof of normalisation by gluing, we need
quotient types, and function extensionality...both of which are
problematic in dependent type theory.

Postulating function extensionality blocks computation

match (funext 𝑒) with
| refl => 𝑡  ???

However, we really wanted to extract an algorithm from our proof!

18



Extensionality in type theory

No reason to panic: in 2025, this is not an insurmountable problem
anymore. We have several options:

▶ Cubical type theory (Coquand, Cohen, Huber, Mörtberg '16)

▶ Observational type theory (Altenkirch, McBride, Swierstra '07)

By changing the behaviour of equality, these theories support
function extensionality and quotient types while retaining all the
metatheoretical properties of Martin-Löf type theory

Furthermore, OTT is available in Coq/Rocq (P., Leray, Tabareau) and can
be implemented in Agda using rewriting rules.

19



Extensionality in type theory

No reason to panic: in 2025, this is not an insurmountable problem
anymore. We have several options:

▶ Cubical type theory (Coquand, Cohen, Huber, Mörtberg '16)

▶ Observational type theory (Altenkirch, McBride, Swierstra '07)

By changing the behaviour of equality, these theories support
function extensionality and quotient types while retaining all the
metatheoretical properties of Martin-Löf type theory

Furthermore, OTT is available in Coq/Rocq (P., Leray, Tabareau) and can
be implemented in Agda using rewriting rules.

19



Extensionality in type theory

No reason to panic: in 2025, this is not an insurmountable problem
anymore. We have several options:

▶ Cubical type theory (Coquand, Cohen, Huber, Mörtberg '16)

▶ Observational type theory (Altenkirch, McBride, Swierstra '07)

By changing the behaviour of equality, these theories support
function extensionality and quotient types while retaining all the
metatheoretical properties of Martin-Löf type theory

Furthermore, OTT is available in Coq/Rocq (P., Leray, Tabareau) and can
be implemented in Agda using rewriting rules.

19



Gluing in a proof assistant

The first step is a definition of the initial CwF
Most natural option: some form of inductive type

More specifically, the initial CwF is best described as a quotient
inductive-inductive type

20



Gluing in a proof assistant

The first step is a definition of the initial CwF
Most natural option: some form of inductive type

More specifically, the initial CwF is best described as a quotient
inductive-inductive type

20



Gluing in a proof assistant

The first step is a definition of the initial CwF
Most natural option: some form of inductive type

More specifically, the initial CwF is best described as a quotient
inductive-inductive type

20



Gluing in a proof assistant

The first step is a definition of the initial CwF
Most natural option: some form of inductive type

More specifically, the initial CwF is best described as a quotient
inductive-inductive type

20



Gluing in a proof assistant

Then, we want to define indexed CwFs over the initial CwF
→ another, even more complex, list of fields

Finally, we want to define the glued model as an indexed CwF
→ welcome to transport hell!

21



Gluing in a proof assistant

Then, we want to define indexed CwFs over the initial CwF
→ another, even more complex, list of fields

Finally, we want to define the glued model as an indexed CwF
→ welcome to transport hell!

21



Gluing in a proof assistant

The transport hell is much worse than what we are used to:

In traditional proofs, terms are a first order object and substitutions
are defined by recursion on terms.
Most substitution laws become definitional equalities

(Π 𝐴 𝐵)[𝜎] ≡ Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

But in our QIIT formulation, substitutions are part of the algebra
signature, and we only get propositional equalities

(Π 𝐴 𝐵)[𝜎] = Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

22



Gluing in a proof assistant

The transport hell is much worse than what we are used to:

In traditional proofs, terms are a first order object and substitutions
are defined by recursion on terms.
Most substitution laws become definitional equalities

(Π 𝐴 𝐵)[𝜎] ≡ Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

But in our QIIT formulation, substitutions are part of the algebra
signature, and we only get propositional equalities

(Π 𝐴 𝐵)[𝜎] = Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

22



Gluing in a proof assistant

The transport hell is much worse than what we are used to:

In traditional proofs, terms are a first order object and substitutions
are defined by recursion on terms.
Most substitution laws become definitional equalities

(Π 𝐴 𝐵)[𝜎] ≡ Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

But in our QIIT formulation, substitutions are part of the algebra
signature, and we only get propositional equalities

(Π 𝐴 𝐵)[𝜎] = Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

22



Gluing in a proof assistant

In conclusion, normalisation by gluing
is even less tractable than old fashioned
normalisation proofs.

23



IV.

Strictification

24



From propositional to definitional

Point of today's talk:
give an alternative definition of the initial CwF, for which almost all
of the administrative equations become definitional equalities.

25



Strictifying groups

Suppose G is a group:

𝐺 ∶ 𝑆𝑒𝑡 𝑢𝑛𝑖𝑡𝑙 ∶ ∀𝑥, 𝑒 × 𝑥 = 𝑥
_ × _ ∶ 𝐺 → 𝐺 → 𝐺 𝑢𝑛𝑖𝑡𝑟 ∶ ∀𝑥, 𝑥 × 𝑒 = 𝑥
𝑖𝑛𝑣 ∶ 𝐺 → 𝐺 𝑖𝑛𝑣𝑙 ∶ ∀𝑥, (𝑖𝑛𝑣 𝑥) × 𝑥 = 𝑒
𝑒 ∶ 𝐺 𝑖𝑛𝑣𝑟 ∶ ∀𝑥, 𝑥 × (𝑖𝑛𝑣 𝑥) = 𝑒
𝑎𝑠𝑠𝑜𝑐 ∶ ∀𝑥 𝑦 𝑧, (𝑥 × 𝑦) × 𝑧 = 𝑥 × (𝑦 × 𝑧)

Then G embeds in the group of permutations of G (Cayley's theorem)

𝑃𝑒𝑟𝑚(𝐺) ∶= { 𝑓 ∶ 𝐺 → 𝐺 | isBijective 𝑓 }

Essential point: the group law on Perm(G) is given by function
composition, which is definitionally associative and unital!

26



Strictifying groups

Suppose G is a group:

𝐺 ∶ 𝑆𝑒𝑡 𝑢𝑛𝑖𝑡𝑙 ∶ ∀𝑥, 𝑒 × 𝑥 = 𝑥
_ × _ ∶ 𝐺 → 𝐺 → 𝐺 𝑢𝑛𝑖𝑡𝑟 ∶ ∀𝑥, 𝑥 × 𝑒 = 𝑥
𝑖𝑛𝑣 ∶ 𝐺 → 𝐺 𝑖𝑛𝑣𝑙 ∶ ∀𝑥, (𝑖𝑛𝑣 𝑥) × 𝑥 = 𝑒
𝑒 ∶ 𝐺 𝑖𝑛𝑣𝑟 ∶ ∀𝑥, 𝑥 × (𝑖𝑛𝑣 𝑥) = 𝑒
𝑎𝑠𝑠𝑜𝑐 ∶ ∀𝑥 𝑦 𝑧, (𝑥 × 𝑦) × 𝑧 = 𝑥 × (𝑦 × 𝑧)

Then G embeds in the group of permutations of G (Cayley's theorem)

𝑃𝑒𝑟𝑚(𝐺) ∶= { 𝑓 ∶ 𝐺 → 𝐺 | isBijective 𝑓 }

Essential point: the group law on Perm(G) is given by function
composition, which is definitionally associative and unital!

26



Strictifying groups

Suppose G is a group:

𝐺 ∶ 𝑆𝑒𝑡 𝑢𝑛𝑖𝑡𝑙 ∶ ∀𝑥, 𝑒 × 𝑥 = 𝑥
_ × _ ∶ 𝐺 → 𝐺 → 𝐺 𝑢𝑛𝑖𝑡𝑟 ∶ ∀𝑥, 𝑥 × 𝑒 = 𝑥
𝑖𝑛𝑣 ∶ 𝐺 → 𝐺 𝑖𝑛𝑣𝑙 ∶ ∀𝑥, (𝑖𝑛𝑣 𝑥) × 𝑥 = 𝑒
𝑒 ∶ 𝐺 𝑖𝑛𝑣𝑟 ∶ ∀𝑥, 𝑥 × (𝑖𝑛𝑣 𝑥) = 𝑒
𝑎𝑠𝑠𝑜𝑐 ∶ ∀𝑥 𝑦 𝑧, (𝑥 × 𝑦) × 𝑧 = 𝑥 × (𝑦 × 𝑧)

Then G embeds in the group of permutations of G (Cayley's theorem)

𝑃𝑒𝑟𝑚(𝐺) ∶= { 𝑓 ∶ 𝐺 → 𝐺 | isBijective 𝑓 }

Essential point: the group law on Perm(G) is given by function
composition, which is definitionally associative and unital!

26



Strictifying groups

If we have access to a sort of proof-irrelevant propositions, we can
define a group that is isomorphic to G:

𝐺′ ∶= { 𝑓 ∶ 𝐺 → 𝐺 | ∃(𝑔 ∶ 𝐺), 𝑓 = 𝜏𝑔 }

With G' being definitionally associative and unital:

((𝑓, 𝑓𝜀) ∘ (𝑔, 𝑔𝜀)) ∘ (ℎ, ℎ𝜀) ≡ (𝑓, 𝑓𝜀) ∘ ((𝑔, 𝑔𝜀) ∘ (ℎ, ℎ𝜀))
(𝑓, 𝑓𝜀) ∘ (𝑖𝑑, 𝑖𝑑𝜀) ≡ (𝑓, 𝑓𝜀)
(𝑖𝑑, 𝑖𝑑𝜀) ∘ (𝑓, 𝑓𝜀) ≡ (𝑓, 𝑓𝜀)

27



Strictifying CwFs, first attempt

Cayley's theorem is an instance of the Yoneda lemma:
any category 𝐶 embeds into the category ̂𝐶 ∶= Hom(𝐶𝑜𝑝, Set).

The Yoneda generalises to categories with families:

Given a CwF 𝐶, the presheaf category ̂𝐶 is naturally equipped with a
CwF structure inherited from Set. Additionally, there is an
embedding of CwFs 𝐶 → ̂𝐶.

We can thus try the same trick: define 𝐶′ to be the image of 𝐶 under
the embedding.

28



Strictifying CwFs, first attempt

Cayley's theorem is an instance of the Yoneda lemma:
any category 𝐶 embeds into the category ̂𝐶 ∶= Hom(𝐶𝑜𝑝, Set).

The Yoneda generalises to categories with families:

Given a CwF 𝐶, the presheaf category ̂𝐶 is naturally equipped with a
CwF structure inherited from Set. Additionally, there is an
embedding of CwFs 𝐶 → ̂𝐶.

We can thus try the same trick: define 𝐶′ to be the image of 𝐶 under
the embedding.

28



Strictifying CwFs, first attempt

Cayley's theorem is an instance of the Yoneda lemma:
any category 𝐶 embeds into the category ̂𝐶 ∶= Hom(𝐶𝑜𝑝, Set).

The Yoneda generalises to categories with families:

Given a CwF 𝐶, the presheaf category ̂𝐶 is naturally equipped with a
CwF structure inherited from Set. Additionally, there is an
embedding of CwFs 𝐶 → ̂𝐶.

We can thus try the same trick: define 𝐶′ to be the image of 𝐶 under
the embedding.

28



Strictifying CwFs, first attempt

𝐶′ is thus isomorphic to 𝐶, and enjoys more definitional eqs:

▶ substitutions are definitionally associative

▶ substitutions are definitionally unital

▶ wk and var0 satisfy their equations definitionally

...BUT

The commutation of substitutions with binders is not definitional

(Π 𝐴 𝐵)[𝜎] �A≡ Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

29



Strictifying CwFs, first attempt

𝐶′ is thus isomorphic to 𝐶, and enjoys more definitional eqs:

▶ substitutions are definitionally associative

▶ substitutions are definitionally unital

▶ wk and var0 satisfy their equations definitionally

...BUT

The commutation of substitutions with binders is not definitional

(Π 𝐴 𝐵)[𝜎] �A≡ Π (𝐴[𝜎]) (𝐵[𝜎 ↑])

29



Strict presheaves

Unfolding the computations, the reason why substitutions do not
commute with binders boils down to natural transformations not
being definitional

𝐹𝑦 (𝑎 | 𝑓) �A≡ (𝐹𝑥 𝑎) | 𝑓

In ''Russian constructivism in a prefascist theory'' (2020), Pédrot
introduces prefascist sets, an alternative definition of presheaves
that is strictly natural.

30



Strict presheaves

Unfolding the computations, the reason why substitutions do not
commute with binders boils down to natural transformations not
being definitional

𝐹𝑦 (𝑎 | 𝑓) �A≡ (𝐹𝑥 𝑎) | 𝑓

In ''Russian constructivism in a prefascist theory'' (2020), Pédrot
introduces prefascist sets, an alternative definition of presheaves
that is strictly natural.

30



Strictifying CwFs, second attempt

If we reproduce our strictification construction using Pédrot's
definition, we obtain a new CwF 𝐶″, in which all* the administrative
equalities are definitional.

We formalised the construction of 𝐶″ and its isomorphism with 𝐶 in
Agda.

Surprisingly doable, even when the CwF is equipped with
dependent products and booleans!

31



Strictifying CwFs, second attempt

If we reproduce our strictification construction using Pédrot's
definition, we obtain a new CwF 𝐶″, in which all* the administrative
equalities are definitional.

We formalised the construction of 𝐶″ and its isomorphism with 𝐶 in
Agda.

Surprisingly doable, even when the CwF is equipped with
dependent products and booleans!

31



Strictifying CwFs, second attempt

If we reproduce our strictification construction using Pédrot's
definition, we obtain a new CwF 𝐶″, in which all* the administrative
equalities are definitional.

We formalised the construction of 𝐶″ and its isomorphism with 𝐶 in
Agda. Surprisingly doable, even when the CwF is equipped with
dependent products and booleans!

31



Back to our original goal

Applying our strictification construction to the initial CwF, it
becomes much easier to construct gluing models. We were able to
define a canonicity model (which computes normal forms for closed
terms) in about 200 lines!

(the strictification construction is about 4000 lines)

32



Thank you!

33


