
Observational Equality Meets CIC

LOÏC PUJET, Department of Mathematics, Stockholm University, Stockholm, Sweden
YANN LERAY and NICOLAS TABAREAU, Inria, Nantes, France

The notion of equality is at the heart of dependent type theory, as it plays a fundamental role in program
specifications and mathematical reasoning. In mainstream proof assistants such as Agda, Lean, and Coq,
equality is usually defined using Martin-Löf’s identity type, an elegant and simple approach that has stood
the test of time since the 1970s. However, this definition also comes with serious downsides: the intensional
nature of Martin-Löf’s identity type means that it is impractical for reasoning about functions and predicates,
and it is impossible to define quotient types. Recently, observational equality has garnered attention as an
alternative method for encoding equality, particularly in proof assistants supporting definitionally proof-
irrelevant propositions. However, it has yet to be integrated in any of the three proof assistants mentioned
above, as it is not fully compatible with another important feature of type theory: indexed inductive types.
In this article, we propose a systematic approach to reconcile observational equality with indexed inductive
types, using a type coercion operator that computes on reflexive identity proofs. The second contribution of
this article is a formal proof that this additional computation rule can be integrated to the system without
compromising the decidability of conversion. Finally, we provide an implementation of our observational
equality in an extension of Coq. This extension is based on the recently introduced rewrite rules and provides
new extensionality principles while remaining fully backward-compatible.

CCS Concepts: • Theory of computation→ Type theory;

Additional Key Words and Phrases: Type theory, Proof assistants, Observational equality, Inductive types,
Rewriting rules

ACM Reference format:
Loïc Pujet, Yann Leray, and Nicolas Tabareau. 2025. Observational Equality Meets CIC. ACM Trans. Program.
Lang. Syst. 47, 2, Article 6 (April 2025), 35 pages.
https://doi.org/10.1145/3719342

1 Introduction
Equality is a fundamental tool for mathematical reasoning and formal specification and thus plays
a central role in proof assistants. In Martin-Löf’s intensional type theory [19], equality is expressed
using the identity type, which is characterized by two elegantly simple principles: equality is
reflexive, and an equality proof cannot be told apart from a proof by reflexivity from inside the
theory (which is known as the J rule, or simply transport). From these two principles, it is possible
to show that the identity type is symmetric, transitive, and even that it satisfies all the laws of a

Authors’ Contact Information: Loïc Pujet (corresponding author), Department of Mathematics, Stockholm University,
Stockholm, Sweden; e-mail: loic@pujet.fr; Yann Leray, Inria, Nantes, France; e-mail: yann.leray@inria.fr; Nicolas Tabareau,
Inria, Nantes, France; e-mail: nicolas.tabareau@inria.fr.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 1558-4593/2025/4-ART6
https://doi.org/10.1145/3719342

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://orcid.org/0000-0002-2070-051X
https://orcid.org/0009-0005-6461-2801
https://orcid.org/0000-0003-3366-2273
https://doi.org/10.1145/3719342
loic@pujet.fr
yann.leray@inria.fr
nicolas.tabareau@inria.fr
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719342
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719342&domain=pdf&date_stamp=2025-04-22

6:2 L. Pujet et al.

higher groupoid [30]. Martin-Löf’s identity type serves as the basis for expressing equality in most
proof assistants based on dependent type theory, in particular in Agda, Coq and Lean.

Unfortunately, this alluring formulation suffers from serious drawbacks: in intensional type
theory, it is simply not possible to prove that Martin-Löf’s identity type satisfies extensionality
rules, and its type-agnostic definition makes it difficult to integrate types for which the equality
relation is specified in an ad hoc manner, such as quotient types. Yet, the reality is that quotient
types and extensionality rules are pervasive throughout mathematics; in particular the principle
of function extensionality—which says that two functions are equal when they are equal at every
point—is taken for granted by most mathematicians and computer scientists. While it is certainly
possible to postulate these extensionality rules as axioms, doing so comes at the price of blocking
computation for the transport operator.

In order to improve this sorry state of affairs, the most natural solution is to go back to the root
of the problem and replace Martin-Löf’s identity type with a better-behaved alternative, such as
the observational equality of Altenkirch et al. [5]. Unlike Martin-Löf’s identity type, observational
equality has a specific definition for every type former, so that the definition of quotient types
becomes straightforward and extensionality principles can be added without too much trouble.
There is some amount of leeway in the precise implementation of this idea; in this work we
build upon the recently proposed system CCobs of Pujet and Tabareau [25]. In CCobs, every type
� is equipped with an observational equality C ∼� D, defined as a proof-irrelevant proposition
with a reflexivity proof written refl. The system also provides a primitive type casting operator
cast � � 4 C that can be used to coerce a term C of type � to the type �, given a proof 4 that these
two types are observationally equal. This type casting operator can then be used to derive the J
rule for the observational equality, which ensures that it is a reasonable notion of equality and thus
a good candidate for an implementation in a proof assistant.

But even though the idea has been around for more than 15 years, none of the mainstream
proof assistants support observational equality as of 2023. One possible reason is that it is not
so easy to integrate it with the sophisticated type systems of modern proof assistants such as
Agda, Coq, and Lean, and in particular with their system of inductive definitions. Thus, the first
contribution of this work is to extend CCobs with the indexed inductive types of Coq and their
computation rules, resulting in a system that we call CICobs. We do so by exhibiting a general
mechanism that distinguishes casts on parameters which can be propagated in the arguments of
constructors, and casts on indices which are blocked and create new normal forms. Therefore, the
indexed inductive types of CICobs can contain more inhabitants than their counterparts in CIC; they
only coincide when indices are taken in a type with decidable equality (e.g., natural numbers in the
case of vectors). Additionally, we give a precise description of observational equality between two
instances � ®G and � ®~ of the same inductive type. The correct specification is slightly more subtle
than the injectivity of type formers—in particular, when a parameter of � is not used in the type
signatures of the constructors of the inductive type, the equality of the two instances does not
imply the equality of the parameter.

Our treatment of indices is based on Fordism, a technique that makes use of the equality type to
reduce indexed inductive definitions to parametrized definitions. Its usefulness in an observational
context has already been noted by Altenkirch and McBride [4], but it should be emphasized that
the computational faithfulness of Fordism crucially relies on the computation rule for transport,
which is weakened in the system of Pujet and Tabareau [25]: the encoding of transport via the
cast operator does not compute on reflexivity proofs as well as the eliminator of Martin-Löf’s
identity type. More precisely, in CCobs it is possible to prove that the propositional equality

cast� � (refl�) C ∼� C

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:3

is inhabited for any type �, but the equality does not hold definitionally. This seemingly harmless
difference implies that the observational equality of CCobs cannot be used to encode the indexed
definitions of CIC. This issue is well-known, and Pujet and Tabareau [24] introduced an auxiliary
equality defined as a quotient type to recover this computation rule at the cost of the definitional
uniqueness of identity proofs (UIP), in a way that is reminiscent of Swan’s definition of identity
type in cubical type theories [28]. In our new system CICobs, we go a step further and show
that the tension can be fully resolved by using the idea of Allais et al. [3] that under certain
conditions, definitional equalities that hold on closed terms can be extended to open terms by
adding new definitional equations on neutral terms. Indeed, the failure of the computation rule
for transport only occurs on open terms, since cast computes on types and terms instead of the
equality proof. For instance, in the case of the identity cast on natural numbers it is already true
in CCobs that cast N N (refl N) 32 ≡ 32, and similarly for any closed natural number—this is
a direct consequence of the canonicity theorem for CCobs [24]. What is missing is the equation
cast N N (refl N) = ≡ = when = is a neutral term, in particular a variable. Thus the problem to
be addressed is

“Can we add those new definitional equations while keeping conversion and type checking decidable?”

In the case of the type of natural numbers, it is very tempting to transform this equation into
a new reduction rule cast N N 4 = ⇒ =. However the case of two neutral types A and B seems
more delicate, since the corresponding rule cast � � 4 C ⇒ C should fire only when A and B are
convertible, and reduction rules that rely on conversion are still poorly understood as already
noticed by Abel and Coquand [1], Werner [32].

Fortunately, this is not the only way to support the desired definitional equality. Coming back to
the case of natural numbers, if= is neutral then neither= nor cast N N 4 = will trigger the reduction
of an eliminator; therefore the decision that cast N N 4 = ≡ = can be deferred to equality checking
after reduction, in the same way that one usually decides [-equality for functions. The second
contribution of this article is a formal proof that this algorithm does indeed lead to a sound and
complete decision procedure for conversion. The argument is formalized in Agda (see Section 9),
following previous work on logical relations by Abel et al. [2], Pujet and Tabareau [24, 25].

Finally, our last contribution is an implementation of CICobs inside Coq, available at
https://github.com/loic-p/coq. This implementation supports the computation of cast on reflexivity
proofs and observational inductive types, while remaining compatible with developments written
in plain CIC.

Related Work. The first proof assistant with an observational equality was the now-defunct
Epigram 2, implemented by McBride [21]. Although it did not have a primitive scheme for inductive
definitions à la Coq, Epigram 2 had support for indexed W-types based on a fancy notion of
containers, and its equality type did implement the computation rule on reflexivity, meaning
that the user could use it to encode indexed definitions using Fordism. The normalization and
consistency of Epigram 2 is justified with an inductive-recursive embedding into Agda, but this
embedding does not account for the computation rule on reflexivity, which is only conjectured not
to break normalization and decidability.

In the world of cubical type theories, more attention has been paid to the definition of general
(higher) inductive types, in particular in the work of Cavallo and Harper [9]. There, the situation
is complicated by the fact that transport for the cubical equality does not support definitional
computation on reflexivity as of today (this is known as the regularity problem), and thus the
Fordism encoding cannot be used directly with the cubical equality. Instead, Cavallo and Harper
add an fcoe constructor to their indexed inductive types in order to keep track of the coercions on

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://github.com/loic-p/coq

6:4 L. Pujet et al.

indices, and they obtain that an inhabitant of an inductive type in normal form is a chain of fcoe
applied to a canonical constructor. This solution is roughly equivalent to combining the Fordism
technique with the identity type of Swan [28]. The resulting cubical inductive types have been
implemented in Cubical Agda by Vezzosi et al. [31] and have been used to develop a sizeable
standard library.

Plan of the article. Section 2 studies the interaction of the observational equality with indexed
inductive type on increasingly complex examples to help the reader build an intuition for the
subject. Section 3 presents the syntax, typing rules, and definition of conversion of CICobs without
inductive types, while Section 4 presents the scheme for inductive definitions. We then present
our formal proof that conversion is decidable in CICobs (Section 5.4) and build a model to show the
consistency of the theory in Section 6. Finally, we go over our implementation of CICobs in Coq
using rewrite rules in Section 7.

2 Observational Equality Meets Calculus of Inductive Constructions (CIC) at Work
The CIC, which is the theoretical foundation of the proof assistants Coq and Lean, includes a
powerful scheme for inductive definitions, originally introduced by Paulin-Mohring [23]. It supports
parameters, indices, and recursive definitions, but also more exotic features such as mutually defined
or nested families. The high level of generality of this scheme allows it to subsume types as diverse
as the natural numbers, Σ-types,, -types, and Martin-Löf’s identity type. If we want to extend Coq
with an observational equality, then we need to understand how it interacts with these inductive
definitions, and to devise suitable computation rules. While some of the rules are self-evident,
others turn out to be more delicate. In this section, we look at three concrete examples of inductive
types to help the reader build their intuition: lists, vectors and Martin-Löf’s identity type.

2.1 Lists
We start with a brief look at the datatype of lists parametrized by an arbitrary type. Its definition
in Coq might look something like this:

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A→ list A→ list A.

In CIC, every type former comes with introduction rules, elimination rules, and computation rules.
In our example, the constructors nil and cons provide the introduction rules, while the elimination
rules are given by the induction principle for lists—in the language of Coq, this induction principle
is decomposed into a pattern-matching operator (match) and a guarded fixpoint operator (fix).
Lastly, the computation rules correspond to the usual]-reduction. In an observational type theory
however, we need more than just the rules for introduction, elimination, and computation. Every
type former should come with three additional ingredients: a definition of the observational equality
between inhabitants of the type, a definition of the observational equality between two instances
of the type former, and computation rules for cast.

Note that there is a bit of leeway in what is meant by a definition of the observational equality: in
the original version of Altenkirch et al. [5] and most of the subsequent literature, the observational
equality type itself evaluates to a domain-specific equality type, meaning that a proof of equality
between two functions is judgmentally the same as a proof of pointwise equality. Alternatively, it
is possible to implement a version of observational type theory in which the equality type does not
reduce, but is instead equipped with primitive operators that can be used to convert (for instance)

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:5

a pointwise equality of functions into a proper equality, as done by Atkey [6]. In this article, we go
with the second approach, as it turns out to be better suited for our implementation in Coq.

Now, let us get back to lists. Obviously, two lists should be observationally equal if and only if
they are either both empty, or have equal heads and recursively equal tails. But as it turns out,
this logical equivalence is already derivable from the induction scheme for lists and the eliminator
for the observational equality—just like we would prove it in plain intensional Martin-Löf Type
Theory. Therefore, we do not need to characterize the equality between lists any further. This stems
from the fact that inductive types are free algebras and do not need any sort of quotienting in
their construction. The observational equality between types, on the other hand, does not benefit
from such an induction principle and must be specified further. Thus we add a new operator to our
theory, which takes an equality between two list types and “projects” out an equality between the
underlying types:
eq−list : list A ∼ list B→ A ∼ B.

This principle is necessary, because a proof of equality between list� and list� should allow us
to coerce a list of elements of � into a list of elements of �, and thus in particular it should allow us
to coerce from� to �. Since this implication is in fact a logical equivalence (the converse direction is
provable from the J eliminator), it does indeed fully determine the observational equality between
list types. Finally, we need to explain how cast computes on lists. Unlike the computation rules
for the observational equality type, these rules are very much necessary, unless we are fine with
having stuck computations in an empty context. Here, there is only one natural choice: typecasting
a constructor of list A should produce the corresponding constructor of list B.

cast (list�) (list�) 4 nil ≡ nil
cast (list�) (list�) 4 (cons0 ;) ≡ cons (cast � � (eq−list 4) 0)

(cast (list�) (list�) 4 ;)
Remark that in the case of a non-empty list, we need to use the eq−list operator in order to apply
cast to the head of the list. Voilà, this is all it takes for an observational type theory with lists.
With this example under our belt, we now move on to a more sophisticated example.

2.2 Indices and Fordism
The next layer of complexity offered by the inductive definitions of Coq is indices. Here, the story
will get more complicated, as indexed inductive types gain new inhabitants in the presence of the
observational equality. To see this, consider Martin-Löf’s identity type, which has two parameters
and one index1:
Inductive Id (A : Type) (x : A) : A→ Type :=
| id_refl : Id A x x.

In intensional type theory, it is well-known that Martin-Löf’s equality type does not satisfy the
principle of function extensionality. But in our observational type theory, it turns out we can prove
that Martin-Löf’s identity type is logically equivalent to the observational equality (we can use
the cast operator in one direction, and the induction principle for Id in the other direction). In
particular, the principle of function extensionality is now provable for Id! As convenient as it might
sound, it also implies that we can get an inhabitant of the type Id (N→ N) (_=.1 + =) (_=.= + 1)
in the empty context, since the two functions are extensionally equal. But this inhabitant cannot be
definitionally equal to id_refl, as the two functions are not convertible. From this, we deduce
1Parameters are placed on the left side of the colon in the inductive definition and must remain unchanged in the output
type of every constructor, while indices are placed on the right side of the colon, and constructors may specify their value
arbitrarily.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:6 L. Pujet et al.

that the closed inhabitants of an indexed inductive type may include more than the canonical ones,
i.e., those that can be built out of the constructors of the inductive type.

In order to get a better grasp on these non-canonical inhabitants, we can turn our attention to
Fordism. This technique was invented by Coquand for his work on the proof assistant ALF in the
1990s, as a way to reduce indexed inductive types to parametrized inductive types and an equality
type. The name Fordism first appeared in the Ph.D. dissertation of McBride [20], in reference to a
famous quote by Henry Ford: “A customer can have a car painted any color he wants as long as it’s
black.” Let us look at the construction at work on the inductive definition of vectors, which is a
little less bare-bones than the inductive identity type:

Inductive vec (A:Type) : N→ Type :=
| vnil : vec A 0
| vcons : ∀ m, A→ vec A m→ vec A (S m).

Vectors are basically lists with an additional index that makes their length available in the type,
ensuring that a vector of type vec A n contains n elements. In order to get the forded version of
vectors, we modify their definition so that the index becomes a non-uniform2 parameter, and the
two constructors gain a new argument:

Inductive vecF (A:Type) (n : N) : Type :=
| vnilF : n ∼N 0→ vecF A n

| vconsF : ∀ m, A→ vecF A m→ n ∼N S m→ vecF A n.

Remark that a forded empty vector vnilF e can have a priori the type vec A n for any n, except that
e is a witness that n is equal to 0. An empty vector can have any size you want, as long as it’s zero!
The point of Fordism is that the induction principle of vec can be derived for vecF, by combining
the induction principle provided by the CIC for vecF and the eliminator of the equality:

vec_elim (A : Type) (P : ∀ n : N, vecF A n→ Type) :
P 0 (vnilF 0 refl)→
(∀ (m : N) (a : A) (v : vecF A m), P m v→ P (S m) (vconsF (S m) m a v refl))→
∀ (n : N) (v : vecF A n), P n v.

vec_elim A P Pnil Pcons n (vnilF n e) ≡
cast (P 0 (vnilF 0 refl)) (P n (vnilF n e)) (vnil0? A e) Pnil.

vec_elim A P Pnil Pcons n (vconsF n m a v e) ≡
cast (P (S m) (vconsF (S m) m a v refl)) (P n (vconsF n m a v e))

(vcons0? A m a e v) (Pcons m a v (vec_elim A P Pnil Pcons m v)).

Here, we used implicit arguments for refl and we used two auxiliary functions vnil0? and vcons0?
which can be defined using the fact that functions preserve equalities. Furthermore, if the cast
operator satisfies the computation rule on reflexivity, then the induction principle provided by the
Fordism transformation satisfies the same computation rules as the standard induction principle
for indexed inductive types. Thus, Fordism can serve as a recipe for the implementation of indexed
inductive types, as long as we know how to handle parametrized inductive types and have an
equality eliminator that computes on reflexivity.

Additionally, this transformation sheds some light on the non-canonical elements of indexed
inductive types: in CIC, the only closed proof of equality is a proof by reflexivity, thus the inhabitants
of vecF A n in the empty context behave exactly like the canonical inhabitants of vec A n. But in
an observational type theory, there are many proofs of equality in the empty context (think for
example of a proof of equality between two functions that are not convertible, but extensionally

2A parameter is said to be uniform when it stays the same across all recursive calls and non-uniform otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:7

equal) which give rise to new elements. These elements can be obtained by casting a canonical
inhabitant to a type with a different (but observationally equal) index, and they cannot be eliminated
away in general.3

2.3 Parameters and Equalities
Now that we know how to handle indexed types, we can revisit Martin-Löf’s identity type, which
plays an important role in CIC. After the Fordism transformation, its definition looks like this:

Inductive IdF (A : Type) (x y : A) : Type :=
| id_reflF : x ∼� y→ IdF A x y.

As we want to incorporate this type into our observational theory, we apply the standard recipe:
we need a definition of the observational equality between inhabitants of IdF, a definition of the
observational equality between two instances of IdF, and computation rules for the cast operator.
The first one is easy, as we can prove that any two inhabitants of IdF A x y are equal: by induction,
we only need to prove it for elements of the form id_reflF e, with e being a proof of x ∼� y. But the
observational equality is definitionally proof-irrelevant, so this is true by reflexivity. In other words,
the principle of UIP is provable for the inductive identity type in observational type theory, in stark
contrast to MLTT or CIC. Thus, we do not need any further characterization of the observational
equality between inhabitants of IdF.

On the other hand, the definition of the observational equality between two instances of the
identity type IdF A x y and IdF A’ x’ y’ makes for a more interesting story. From our study of lists,
it might be tempting to extrapolate that an observational equality between two instances of a
parametrized inductive datatype should imply an equality between the parameters. In the case of
IdF, this translates to the following principle:

IdF A x y ∼ IdF B z w→ ∃ (e : A ∼ B), (cast A B e x ∼ z) ∧ (cast A B e y ∼ w).

This means that parametrized inductive definitions are injective functions from the type of parame-
ters to the universe. Unfortunately, this idea turns out to be incompatible with the rules of CIC.
Indeed, according to these rules the inductive equality Id A x y should live in the lowest universe,
since it has only one constructor with no arguments. But then if A is a large type, we get an injective
function from A into the lowest universe, which is potentially inconsistent—for instance, consider
the following function:

inj (X : Type→ Type) := IdF (Type→ Type) X X.

If the IdF type former is injective, then inj is an injection of Type→ Type into Type, from which we
can encode Russell’s paradox and derive an inconsistency for CIC as shown by Miquel [22]. Thus, if
we really want to have this injectivity of parameters, we need to modify the rules of our theory so
that inductive definitions are only allowed in a universe that is sufficiently large to accommodate
their parameters. But this is not exactly reasonable: this would mean that we cannot abstract over
the definition of an inductive type using Coq’s sections mechanism, since section variables are
translated to inductive parameters. In other words, inductive definitions would only make sense in
closed contexts.

In order to avoid such a serious drawback, we will use a completely different definition for the
observational equality between inductive types. After all, what do we need this definition for?

3In the case of vectors, it is possible to find alternative encodings that do not have these new canonical elements, because
the equality between indices is decidable in the empty context. However, we aim at a systematic and uniform treatment of
indexed inductive types, so we do not consider this option.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:8 L. Pujet et al.

The answer is simple: we need some observational equalities to put in the computation rules for
the cast operator.

cast (IdF A x y) (IdF B z w) e (id_reflF e’) ≡ …

For inductive types without indices, these computation rules are very systematic: when cast is
applied to a constructor, then it should naturally reduce to the corresponding constructor of the
target inductive. Thus, we need to produce an inhabitant of x’ ∼�′ y’ from an inhabitant of x ∼� y.
This is a job for the cast operator:

cast (IdF A x y) (IdF B z w) e (id_reflF h) ≡ id_reflF (cast (x ∼ y) (z ∼ w) ? h).

In order to fill the question mark hole, we need a proof of observational equality between the two
types x’ ∼�′ y’ and x ∼� y. Since all we have is a proof of equality between IdF A x y and IdF B z w,
we need a way to extract the desired equality out of it. The injectivity of inductive types is sufficient
for this purpose, but it is not necessary. Instead, we can go for the bare minimum: an observational
equality between two instances of the same inductive definition should imply the equality of all the
types of their constructor arguments, and nothing more. In the case of the inductive IdF, it means
that we get the following projection:

eq−IdF : IdF A x y ∼ IdF B z w→ (x ∼ y) ∼ (z ∼ w).

This is enough to fill the question mark hole in the computation rule for cast. Furthermore, as we
prove in Section 6, this form of injectivity is sufficiently weak to allow the identity type to live in
the lowest universe without endangering the consistency of the theory.
3 An Observational Type Theory with Martin-Löf’s Computation Rule
At this stage, we have a good idea of the ingredients that are required for our observational
type theory with inductive types: first, we need a system with a cast operator that computes on
proofs by reflexivity. Next, we add parametrized inductive types with projection operators for the
observational equality and computation rules for cast. Finally, we use the Fordism transformation
to take care of indexed inductive types.

We thus turn ourselves to the definition of a formal system that incorporates all of these ingre-
dients, which we call CICobs. It is based on the system CCobs of Pujet and Tabareau [25], but with a
few tweaks; the most important one being the additional computation rule for the cast operator
on reflexivity proofs. In this section, we provide a brief presentation of the syntax, typing rules
and declarative conversion for the core of CICobs, with an emphasis on the points that differ from
CCobs, before defining the scheme for inductive types in Section 4. All the definitions in the figures
closely follow our Agda formalization. We refer to files in the formalization as [myFile.agda].
3.1 The Syntax of CICobs

The syntax of the sorts, contexts, terms, and types of CICobs is specified in Figure 1. The sorts of our
system are divided into a predicative hierarchy (U8)8∈N which mirrors the Type hierarchy of Coq,
and an impredicative sort Ω of proof-irrelevant propositions which corresponds to Coq’s SProp.
The base types are the false proposition ⊥, the observational equality C ∼� D, and the dependent
function type ΠB,B′ (G : �). �. For the sake of readability, we will frequently drop the sort annotations
on dependent products when they can be inferred from the context, and when � does not depend
on �, we write � → � instead of Π(G : �). �. In addition to these basic types, our theory also
includes a definition scheme for indexed inductive types, that can be used to extend the syntax
with new types and terms (cf. Section 4).

Compared to the previous system CCobs, we add four new primitives Π1
n , Π2

n , Ωext, and Πext,
whose role is to provide the properties of the observational equality which were previously given

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.myFolder.myFile.html

Observational Equality Meets CIC 6:9

Fig. 1. Syntax for the negative fragment of CICobs[Untyped.agda].

as computation rules. For instance, in CCobs, an equality between two function types evaluates
to a Σ-type that contains equalities of the domain and codomain, while in our new system these
two equalities are obtained by applying Π1

n and Π2
n to the proof of equality between function

types. Replacing computations with these new primitives does not endanger the computational
properties of our theory, since they only ever produce computationally irrelevant equality proofs,
and results in a more elegant system that does not need a primitive Σ-type. This way of handling
the properties of the observational equality is especially convenient when dealing with inductive
definitions, where equalities between types imply complex telescopes of equalities which would be
cumbersome to express with nested Σ-types.
3.2 The Typing Rules of CICobs

The typing rules of CICobs are based on five judgments:

` Γ Γ is a well-formed context,
Γ ` � : B � is a well-formed type of sort B in Γ,
Γ ` C : � : B C is a term of type � in sort B in Γ,
Γ ` � ≡ � : B � and � are convertible types of sort B in Γ, and
Γ ` C ≡ D : � : B C and D are convertible terms of type � in Γ.

In all the judgments, B denotes either U8 or Ω. Note that since every universe has a type, the
well-formedness judgments for types Γ ` � : B (and convertibility judgments of types) can be
seen as special cases of typing judgments for terms Γ ` � : B : B′ for a suitable B′ but we keep the
type-level judgments to avoid writing unnecessarily many sort variables.

The rules for universes, dependent function types, and the empty type are taken directly from
CCobs, so we only give a brief overview here (Figure 2).. The complete set of rules is available
in [Typed.agda]. We use PTS-style notations of Barendregt [7] to factorize the rules that involve
universes: the formation rule for universes states that both U8 and Ω are inhabitants of a higher
universe, as described by the relations

A(U8 ,U9) := 9 = 8 + 1 A(Ω,U8) := 8 = 0.

As for dependent products, we allow their formation with a domain and a codomain that have
different sorts. If the codomain is a proof-relevant type, then the dependent product should have a
universe level that is the maximum between the level of the domain and that of the codomain. On
the other hand, if the codomain is a proposition, then the result is a proposition regardless of the
size of the domain. This is made formal by using the function R(_, _) defined as

R(B,Ω) := Ω R(Ω,U8) := U8 R(U8 ,U9) := Umax(8, 9) .

Equality and Type Casts. Every proof-relevant type is equipped with its observational equality
type, which takes the form of a proof-irrelevant binary relation C ∼� D. Of course, proof-irrelevant
types have no use for an observational equality type, since any two inhabitants would always be

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Untyped.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Typed.html

6:10 L. Pujet et al.

Fig. 2. CICobs Typing rules [Typed.agda].

in relation by reflexivity. The observational equality is equipped with two eliminators, which are
called transp and cast. The former is similar to the J eliminator from MLTT, except that it is
restricted to proof-irrelevant predicates. Elimination into the proof-relevant layer is thus handled
by the cast operator, which provides coercions between two observationally equal types. Its type
seems less general compared to the standard J eliminator at first glance, but since equality proofs
are definitionally irrelevant, it turns out that a J eliminator for proof-relevant predicates can be
derived from the cast operator [24].

As we already mentioned, the extensional properties of the observational equality are given by
the primitives Π1

n , Π2
n , Ωext, and Πext: rules Eq-Π1 and Eq-Π2 allow us to deduce the equality of

domains4 and codomains from an equality between two dependent functions types, rule Eq-Ω
provides propositional extensionality, and rule Eq-Fun provides function extensionality.

3.3 Conversion
Conversion, which is also called definitional or judgmental equality, is a judgment that relates terms
that are interchangeable in typing derivations. The rules that define the conversion judgment are

4Because of contravariance, the equality between the domains is swapped with respect to the original equality.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Typed.html

Observational Equality Meets CIC 6:11

Fig. 3. CICobs Conversion Rules (except congruence rules) [Typed.agda].

reproduced in Figure 3. Conversion is defined as a reflexive, symmetric, and transitive relation; it is
also closed under congruence (e.g., if � ≡ �′ and � ≡ �′ then Π(G : �).� ≡ Π(G : �′).�′), although
we did not reproduce all the corresponding rules in Figure 3 for the sake of brevity. The conversion
judgment is itself subject to the conversion rule (rule Conv-Conv).

As usual, the conversion relation contains the V-equality for proof-relevant applications (rule
V-conv) and the[-equality of functions5 (rule[-Eq).The rule Proof-Irr reflects the proof-irrelevant
nature of propositions: any two proofs of the same proposition are deemed convertible. Additionally,
the conversion relation also includes the computation rules for the pattern-matching of inductive
constructors that we define in Section 4.

Next, we have the rules that describe the behaviour of the cast operator on each type. The rule
Cast-Π is standard; it says that a cast function evaluates to a function that casts its argument,
applies the original function, and then casts back the result. Note that this rule needs the two
projections Π1

n and Π2
n to get equality between the domains and the codomains. Furthermore,

every declaration of an inductive type adds a handful of computation rules for the cast operator,
described in Section 4. Last but not least, the rule Cast-Refl is the main innovation of CICobs.
It states that cast between convertible types can be simplified away, regardless of the proof of
equality. This rule plays an important role in ensuring compatibility with the CIC: recall that cast
can be used to derive a J eliminator for the observational equality—then rule Cast-Refl implies
that this eliminator computes on reflexivity proofs, just like the usual eliminator of Martin-Löf’s
inductive equality.

5The propositional [-equality is actually provable in observational type theory, since it is a special case of the extensionality
of functions. Nevertheless, it is still convenient to have it as a conversion rule, to get a more flexible system.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Typed.html

6:12 L. Pujet et al.

4 Inductive Definitions
On top of the rules from Section 3, CICobs includes a scheme for proof-relevant inductive definitions
that is based on the scheme of CIC (as defined by Timany and Sozeau [29]). Inductive definitions
are not manipulated as first class objects: rather, the user declares all the necessary inductive types
using a standard syntax, before starting their proof. After each declaration, the theory is extended
with the new type former, inductive constructors, and so on, just like in Coq.

The syntax for the inductive definitions of CICobs is exactly the same as in CIC; the difference lies
in the fact that inductive definitions additionally have to generate projections for the observational
equality types and computation rules for the cast operator. We start by explaining how it works for
inductives without indices, and then we extend it to general indexed inductive definitions by using
the Fordism transformation and some syntactic sugar. We spare the reader the added complexity of
mutually defined families and nested inductive types, which is mathematically straightforward but
heavy on notation.

4.1 Inductive Definitions without Indices
We use a syntax based on the one used by the Coq proof assistant for inductive definitions. The
general form of an non-indexed inductive type looks like this:

Inductive Ind (®0 : ®�) : Uℓ :=
| 20 : ∀ (®1 : ®�0), Ind ®0
| …
| 2= : ∀ (®1 : ®�=), Ind ®0

In order to represent arbitrary contexts of parameters more compactly, we used a vector notation.
The parameter (®0 : ®�) represents a context of the form 01 : �1, ..., 0< : �< where each type may
depend on the previous ones. Similarly, every constructor of the inductive type has a context of
arguments, that may include recursive calls to Ind in strictly positive positions [11] with possibly
non-uniform parameters—but we will not be paying special attention to recursive calls, as their
treatment is not affected by the observational equality. The universe Uℓ must be large enough
to fit all the types that appear in the constructor arguments ®�8 and there is no size constraint
regarding parameters. To simplify the presentation, inductive definitions are not allowed in the
sort of propositions Ω, but they can be faithfully simulated using impredicative encodings and
proof irrelevance.

After the user makes such a definition, the system is extended with the new type former Ind and
the inductive constructors 20, … 2= with their prescribed types. Additionally, CICobs provides two
operators match and fix that are used to define functions out of an inductive definition, following
the typing and computation rules described by the Coq Development Team [11]. As we explained
in Section 2, this elimination principle is sufficient to fully characterize the observational equality
between any two inhabitants of Ind, thus our system does not provide any additional rule for this.
However, the observational equality between two instances of Ind does not benefit from any such
principle, so we add “projection” operators to characterize equalities between inductive types:

eq_28 : ∀ (®0 : ®�) (®0′ : ®�), Ind ®0 ∼ Ind ®0′ → ®�8 [®0] ∼ ®�8 [®0′]. (∀ i)

The projections eq_28 are generated when the user makes the definition of Ind, just like the
constructors 28 . Remark that the codomains of these projections are equalities between two vectors,
which is a notational shorthand for a vector of equalities. In practice, this means that each eq_28 is
implemented as a family of projections (eq_28, 9), where each projection depends on the previous ones.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:13

Thus, we get as many projections as there are constructor arguments in the inductive definition.
Finally, we add computation rules for cast:

cast (Ind ®0) (Ind ®0′) e (28 ®1) ≡ 28 (cast (®�8 [®0]) (®�8 [®0′]) (eq_28 ®0 ®0′ e) ®1). (∀ i)

4.2 Deriving a Scheme for Indexed Inductive Types
In order for CICobs to be a proper extension of CIC, we need to extend our scheme to indexed
inductive definitions. These get a bit messier than non-indexed definitions, but in fact we already
have all the pieces we need: As we saw in Section 2.2, the rule Cast-Refl allows us to use the
Fordism transformation and faithfully encode indexed inductives with parametrized inductives.
Consequently, we define the scheme for indexed definitions in terms of the scheme for non-indexed
definitions, using syntactic sugar and elaboration. That way, the typing and computation rules
of CIC that involve indexed inductive types remain valid in CICobs, but the inductive types and
constructors are elaborated to their non-indexed counterpart under the hood.

We now explain in detail how this elaboration process works. When the user defines an indexed
inductive type Ind, they are actually defining the forded version IndF via the scheme for non-indexed
definitions:

Inductive Ind (®0 : ®�) : ∀ (®G : ®-), Uℓ :=
| 20 : ∀ (®1 : ®�0), Ind ®0 ®~0
| …
| 2= : ∀ (®1 : ®�=), Ind ®0 ®~=

⇒

Inductive IndF (®0 : ®�) (®G : ®-) : Uℓ :=
| 20F : ∀ (®1 : ®�0), ®~0 ∼ ®G → IndF ®0 ®G
| …
| 2=F : ∀ (®1 : ®�=), ®~= ∼ ®G → IndF ®0 ®G

This scheme generates projections for observational equalities between the constructor arguments,
including the index equalities ®~8 ∼ ®G that are hidden in the user definition. After this step, Ind and
its constructors are transparently elaborated in terms of their forded counterparts:

Ind ®0 ®G ≡ IndF ®0 ®G 28 ®1 ≡ 28F ®1 refl

Likewise, pattern matching on inhabitants of the indexed inductive type is elaborated to a pattern
matching on the forded version, by inserting a cast in each branch. Concretely, consider the
following pattern matching on i : Ind ®0 ®G :

match i return P with

| 20 ®1 ⇒ C0

| ….
| 2= ®1 ⇒ C=

end

The return type is P ®G i, and thus in the branch for 28 ®1, the term C8 provided by the user has type
P ®~0 (28 ®1). After the elaboration, this branch matches a forded pattern 28F ®1 4 and should now return
a result of type P ®G0 (28F ®1 4). We can obtain this result by type casting the user-supplied term C8
along the equality proof 4 to obtain

cast (P ®~0 (28 ®1)) (P ®G0 (28F ®1 4)) (ap2 P (28F ®1) e) C8 ,

where ap2 is a slight generalization of the proof that function applications preserve equalities.
Thanks to the rule Cast-Refl, this elaboration preserves the computation rule of the pattern-
matching for indexed inductive types. Note that there is nothing special to do for fixpoints, they
work out of the box. This concludes the description of our formal system CICobs.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:14 L. Pujet et al.

Fig. 4. Typing and conversion rules for natural numbers [Typed.agda].

5 Decidability of Conversion
In this section, we show that conversion is decidable in presence of the rule Cast-Refl for a
simplified version of CICobs in which the induction scheme is reduced to the type of integers. For
completeness, the typing and conversion rules for natural numbers are given in Figure 4. Generally
speaking, the main source of difficulty for the decidability of conversion in dependent type theory
is the transitivity rule—because of it, we have no guarantee that comparing two terms structurally
is a complete strategy, since transitivity may be used with an arbitrary intermediate term at any
point. If we want a decision procedure, we need to replace this transitivity rule with something
more algorithmic.

Our aim is thus to define an equivalent presentation of the conversion for which transitivity is
an admissible rule, but is not primitive. This is traditionally achieved by separating the conversion
into a notion of weak-head reduction (Section 5.1) and a notion of conversion on neutral terms
and weak-head normal forms (whnf) (Section 5.2). In standard CIC, this strategy is sufficient
to get canonical derivations of conversion, for which we have a decision procedure: we check the
existence of a canonical derivation by first reducing terms to their whnf and then comparing their
head constructors and making recursive calls on their arguments. The point of this algorithmic
definition of conversion is to replace the arbitrary transitivity rules with deterministic computations
of whnf. Then we can show that transitivity is admissible for conversion on neutral terms and
whnf. Naturally, this definition requires a proof of normalization of well-typed terms.

In the case of CICobs however, the decision procedure for conversion of neutral terms and whnf
cannot be defined as a straightforward structural comparison. When the two terms start with cast,
there are three rules that may apply: either congruence of cast, rule Cast-Refl on the left-hand
side, or rule Cast-Refl on the right-hand side. This means that the decision procedure (Section 5.4)
have to do some backtracking to explore all possible combinations of congruence of cast and Rule
Cast-Refl. Fortunately, the search space is bounded as every recursive call is done on a smaller
argument.

Finally, to conclude on the decidability of conversion, we need to show that the declarative
conversion is equivalent to our algorithmic conversion. For that, we use the logical relation setting

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Typed.html

Observational Equality Meets CIC 6:15

Fig. 5. Weak-head normal and neutral forms [Untyped.agda].

of Abel et al. [2] to guarantee that every term can be put in whnf and that algorithmic conversion
is complete with respect to conversion (Section 5.5).

Note that our formalized version of CICobs only supports the inductive type of natural numbers,
and not the full scheme from Section 4. This is due to the setting of the formal proof, which requires
the added inductive types to be explicit because Agda’s check that the logical relation is well-
defined makes use of the strict positivity criterion, which is syntactic and cannot be abstracted
away for a generic definition. In practice, we expect that the additional inductive types would not
pose any additional difficulty with respect to the presence of Rule Cast-Refl.

5.1 Reduction to whnf
Anotion that plays a central role in our normalization procedure is that of awhnf, which corresponds
to a relevant term that cannot be head-reduced further (Figure 5). Whnf are either terms with a
constructor in head position or neutral terms stuck on a variable or an elimination of a proof of
⊥. In other words, neutral terms are whnf that should not exist in an empty context. In CICobs,
inhabitants of a proof-irrelevant type are never considered as whnf, as there is no notion of reduction
of proof-irrelevant terms.

This notion of neutral terms is standard, but we need to pay a particular attention to neutral terms
for cast. They correspond to all forms of cast for which there is no attached reduction rule. Because
we assume that cast first evaluates its left type argument, then the second and finally its term
argument, neutral terms of cast occur either when the first type is neutral, or when the first type is
a type constructor and second type is neutral, or when the two type are the same type constructor,
but the argument is neutral. Note that the reduction rule for casting a function always fires, so there
is no associated neutral term in that case. Finally, casts between two different type constructors
are always considered as stuck terms and should be seen as variant of ⊥−elim � 4 because they
corresponds to casts based on an inconsistent proof of equality, thus similar to elimination of a
proof of ⊥.

Figure 6 introduces a notion of typed reduction, noted Γ ` C ⇒ D : � that is at the heart
of the decision procedure for conversion. Intuitively, reduction corresponds to an orientation of
conversion rule in order to provide a rewrite system for which we can compute normal form.
However, not every conversion rule gives rise to a reduction rule, and in particular Rule Cast-Refl
which would enter in conflict with many other reduction rules of the system and more importantly
would require a test of conversion for the rule to be triggered. This means that there would be a
circularity between the definition of reduction and the notion of conversion. We are not aware of
any framework to handle such a circularity. To avoid it, we go for a treatment of Cast-Refl only
for neutral terms and whnf. However, for efficiency purpose, we will see in Section 7 that we can
implement the directing version of Cast-Refl, once we know that the theory is decidable.

Actually, the purpose of reduction is to compute whnf so that conversion rules that are not part
of the reduction have only to be checked on whnf.

Rules V-red, N-Elim-Zero-red, N-Elim-Suc-red, and Cast-Π-red are direct orientations of
their corresponding conversion rule. Rules suffixed with subst corresponds to oriented congruence
rules. Note that in the case of cast, we need to be careful to reduce one argument after the other

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition..Untyped.html

6:16 L. Pujet et al.

Fig. 6. CICobs reduction rules [Typed.agda].

in order, so that weak-head reduction remains deterministic, which is crucial in the logical relation
setting of Section 5.5.

The reduction rules Cast-Zero Cast-Suc, and Cast-Univ correspond to the rule Cast-Refl
where the arguments are instantiated by whnf that are not neutral. Indeed, in that case cast
must reduce. Conversion for cast when one of the scrutinees is neutral is differed to algorithmic
conversion.

Note that because reduction is typed, we need to be able to change the type by any convertible
one (Rule Conv-Red). Finally, we consider the reflexive transitive closure of reduction, noted
Γ ` C ⇒∗ D : �.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition..Typed.html

Observational Equality Meets CIC 6:17

Fig. 7. CICobs algorithmic conversion rules [ConversionGen.agda].

5.2 Algorithmic Conversion
Algorithmic conversion (Figure 7) is defined by comparing weak-normal forms and interleaving it
with reduction.This way, an algorithmic conversion derivation can be seen as a canonical derivation
of declarative conversion, where “transitive cuts” have been eliminated. It is called algorithmic,
because it becomes directed by the shape of the terms, and the premises of each rule are on smaller
terms. In CIC, it is even the case that at most one rule can be applied, so decidability of algorithmic
conversion is pretty direct. In CICobs however, decidability of algorithmic conversion is less direct
because there are three rules that can be applied when the head is cast on both side. We come
back to this difficulty in Section 5.4.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition..ConversionGen.html

6:18 L. Pujet et al.

The judgment Γ ` C �=4 D : � corresponds to a canonical conversion derivation between two
neutral terms C and D at an arbitrary type � while the judgment Γ ` C � D : � corresponds to
a canonical derivation of conversion for terms in whnf when the type is also in whnf. This can
be understood from a bidirectional perspective because comparison of neutral terms infers an
arbitrary type, whereas for other whnf, the inferred type is also in whnf. Bidirectional typing as
recently popularized by Lennon-Bertrand [17, 18] is traditionally used in type theory to provide
a canonical typing derivation by splitting the typing judgment into two: one judgment that infers
the type of a term and another one that checks that the inferred type of a term is convertible to
the type given as input. This allows bidirectional typing to restrict the use of the conversion rule
only to well-controlled places and thus to provide only canonical derivations. In this presentation,
it should be noticed that neutral terms infer arbitrary types (for instance, the application rule
infers the type of the codomain of the function with an additional substitution) whereas other
whnf always infer types which are also in whnf. This means that we need to reflect this important
distinction in the algorithmic conversion because the structural conversion rules for neutral terms
(Γ ` C �=4 D : �) is naturally performed at an arbitrary type � whereas Γ ` C � D : � is always
done at a type � in whnf.

Because conversion of whnf must contain conversion of neutrals as a particular case, we need
those two notions to be compatible. To that end, we introduce two other judgments: Γ ` C �↓=4 D : �
means that Γ ` C �=4 D : � and � is the whnf of � (Rule Ne-Red) and conversely Γ ` C �↓ D : �
means that Γ ` C ′ � D′ : � and C ′, D′, and � are the whnf of C , D, and �, respectively (Rule
Whnf-Red).

Let us now turn to the description of the relation Γ ` C � D : �which mainly contains congruence
rules for weak-head constructors, that are used in particular to show that reflexivity is admissible.
Those congruence rules just ask for convertibility of each sub-argument, with some sanity conditions
on the leaves, to ensure that only well-typed terms are considered in the conversion relation. Rule
[-dec is a direct implementation of [-conversion, where the terms C G and D G are first put into
whnf before being compared. Then, the rule ne-whnf says that two neutral terms are comparable
as whnf when they are comparable as neutral terms.

The relation Γ ` C �=4 D : � contains a first rule to deal with proof irrelevance in Ω (Rule
Proof-Irr). As any term whose type is in Ω is neutral, this rule only checks that the two terms are
proofs of the same proposition. The rule for variables (Rule Var-refl) applies when there is the
same variable G on the left and on the right, and this variable is declared in the local context Γ.

Then, there are four congruence rules to deal with eliminators. An eliminator is neutral when one
of its scrutinees is neutral. For Rules app-cong, N-Elim-cong, and ⊥-Elim-cong, there is only one
scrutinee to which we inductively apply conversion of neutral terms. For the rest of the arguments,
general conversion of weak-head normal form is asked. The situation for cast is more complex
as there are three different scrutinees (the two types and the term to be cast) and the whole term
is neutral as soon as one of them is neutral. There is also a last kind of neutrals for cast which
corresponds to impossible casts, that is casts between types with different head constructors. We
can actually factorize all those cases and present only one rule (Cast-cong) that simply asks both
casts to be neutral terms, at the cost of a seemingly less accurate system. Indeed, because we are
oblivious to the reason why the casts are neutral, all preconditions are asking for conversion as
whnf instead of specializing in the case of neutral terms. However, by inversion on the rule, it is
possible to show that two neutral terms are convertible as whnf if and only if they are convertible
as neutral terms, so in the end this factorized rule is equivalent to a system with one rule per kind
of neutral terms as defined in [Conversion.agda].

To deal with Cast-Refl, we need to introduce two rules, one for simplification of cast on the left
and one on the right. This is because we have no rule for symmetry (to keep the system algorithmic)

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition..Conversion.html

Observational Equality Meets CIC 6:19

yet symmetry must be an admissible rule. So the conversion rule is split into the two rules Cast-
refl-L and Cast-refl-R. Again, we use a factorization to get only two rules, not specializing on
the reason why a cast is neutral.

The key aspect of this algorithmic conversion is that it does not contain any rule for symmetry
or transitivity, which are primary contributors to undecidability for conversion.

5.3 Symmetry and Transitivity of Algorithmic Conversion
The correctness of algorithmic conversion is immediate as the rules used are subsumed by the
declarative conversion judgment [Soundness.agda].

Showing that the algorithmic conversion is also complete is however much more complex,
and the proof is deferred to Section 5.5. We here focus on two important ingredients, the facts
that symmetry and transitivity are admissible for algorithmic conversion. The main issue for the
statement of symmetry is that actually the comparison of neutral terms infers the type, but this
inference is biased toward the left argument. Indeed, in the rule for congruence of application for
instance (Rule app-cong), the term that is used to perform the substitution in the codomain of the
function is the argument of the left-hand side. Thus, when considering the symmetric judgment,
the inferred type may be different. Similarly, in the rule of congruence of Πs (Rule Π-cong), the
context is extended with a variable in the type of the domain of the left-hand side, thus when
considering the symmetric version, the context needs to be changed.

Hopefully, it is still possible to show actually all those differences are actually up to convertible
types and contexts, convertible in the sense of declarative conversion. The fact that we rely on
declarative conversion here is not a problem as the type annotation is used for correctness of the
algorithmic conversion, but it does not play any role in the decidability procedure that we derive.

So the symmetry of algorithmic conversion that can be proven can be stated as follows.

Lemma 5.1 (symmetry of algorithmic conversion [Symmetry.agda]). Given a proof of neutral
comparison Γ ` C �=4 D : � and a context ∆ such that ` Γ ≡ ∆, there exists a type � such that
Γ ` � ≡ � : B and ∆ ` D �=4 C : �.

Proof. This lemma is proven mutually with similar statement for the three other forms of
algorithmic conversion, by induction on Γ ` C �=4 D : �. �

The situation for transitivity introduces a different complication: because of the presence of the
rules Cast-refl-L and Cast-refl-R, it is not possible to prove transitivity by a structural induction
on the two derivations of algorithmic conversion simultaneously. Indeed, when proving transitivity
for Γ ` cast � � 4 C �=4 D : � proven by Cast-refl-L against any conversion Γ ` D �=4 E : �,
we need to use transitivity between the sub-proof of Γ ` C �=4 D : � and the original proof of
Γ ` D �=4 E : �. Thus the recursive call only decreases on the left argument. But in the dual
situation of Γ ` C �=4 D : � against Γ ` D �=4 cast � �′ 4′ E : � proven by Cast-refl-R, we
need to do a recursive call that only decreases on the right argument. This is illegal in general, and
we need to justify termination some other way. Fortunately, it is enough to consider a notion of
size of a derivation, noted size, that basically corresponds to the size of the underlying tree of
the derivation.

Using this notion of size, we can state the following generalized transitivity lemma.

Lemma 5.2 (transitivity of algorithmic conversion [Transitivity.agda]). For any natural
number =, given two proofs of neutral comparison c : Γ ` C �=4 D : � and c ′ : ∆ ` D �=4 E : �
such that ` Γ ≡ ∆ and size(c) + size(c ′) < =, there exists a type � such that Γ ` � ≡ � : B ,
Γ ` � ≡ � : B , c ′′ : Γ ` C �=4 E : � and size(c ′′) ≤ size(c) + size(c ′).

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Conversion..Soundness.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Conversion.Symmetry.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Conversion.Transitivity.html

6:20 L. Pujet et al.

Proof. This lemma is proven by induction on =. The case for = = 0 is trivial because the size
condition cannot be met. In the successor case = = (=′, we do a case analysis on the proofs of
algorithmic conversion and do recursive call to transitivity on derivations for which the additional
size is smaller than =′. Because of commutativity of addition, the size only needs to decrease on
one of the two derivations. Note that it is necessary to control the size of the resulting proof of
transitivity because proving transitivity in the case of Cast-cong with Cast-refl-L involves some
commutative squares that requires nested calls to transitivity. Indeed, on the one side, we have
that cast � � 4 C � cast �′ �′ 4′ D because � � �′ and �′ � �, and cast �′ �′ 4′ D � E because
�′ � �′. We have to show that cast � � 4 C � E , which requires in particular to show that � � �.
This follows from the transitivity chain � � �′ � �′ � �. �

5.4 Decidability of Algorithmic Conversion
We now turn to the definition of a decision procedure for the algorithmic conversion [Decidable.agda].
Actually, what we first prove is the decidability of algorithmic conversion for two terms C and
D, assuming that we know that Γ ` C �=4 C : � and Γ ` D �=4 D : �. The fact that algorithmic
conversion is reflexive is actually a consequence of the completeness of algorithmic conversion
with respect to declarative conversion that will be shown in the next section. The hypothesis that
C and D are in diagonal of the algorithmic conversion contains a lot of information, because by
inversion on the derivations, we can actually recover the fact that C and D can be reduced to a
whnf whose subterms can also be reduced in whnf, and this again and again up-to getting a deep
normal form.

The decidability proof of conversion for MLTT done by Abel et al. [2] coarsely amounts to
zipping the two reflexivity proofs together, showing that when the two derivations do not share
the exact same structure, then the two terms are not convertible. This is not the case anymore in
presence of the rules Cast-refl-L and Cast-refl-R and the reasoning cannot stay on the “diagonal”
of the algorithmic conversion. This is not an issue as actually from the fact that Γ ` C �=4 C ′ : �, we
can deduce that both C and C ′ can be put in deep normal form and so Γ ` C �=4 C ′ : � can be used as
termination witness in the same way as Γ ` C �=4 C : �.

The main difficulty however is that in this new setting, if derivations don’t share the exact same
structure, it does not necessarily follow that the terms are not convertible. Consider for instance
cast � � 4 C against C which cannot have the same derivation proving they are in the diagonal of
the algorithmic conversion, yet are convertible by Rule Cast-refl-L. And in the more complex
case of cast � � 4 C against cast �′ �′ 4′ C ′, there are three cases to consider, because the last rule
to show that they are convertible can be either Cast-cong, Cast-refl-L, or Cast-refl-R. This
means in particular that the proof that two terms are algorithmically convertible is not unique
anymore, and the decidability procedure has to do an arbitrary choice, depending on which order
it tests the three different possibility and backtracks.

The statement of decidability needs to be generalized in the following way.

Theorem 5.3 (Decidability of algorithmic conversion [Decidable.agda]). For any natural
number =, given two proofs of neutral comparison c : Γ ` C �=4 C ′ : � and c ′ : ∆ ` D �=4 D′ : �
such that ` Γ ≡ ∆ and size(c) + size(c ′) < =, knowing whether there exists a type � such that
Γ ` C �=4 D : � is decidable.

Proof. Again, the proof uses arguments of sizes, because it is not structurally decreasing on
conversion derivations. The main difficulty in the proof is that when the derivations c and c ′ do not
start with the same rule, it is not guaranteed that C and D are not convertible. Indeed, as mentioned
above, c may for instance start with the rule Cast-cong that can be eliminated away because we
could use Cast-refl-L instead. This means that there are many more potential successful cases

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Conversion..Decidable.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Conversion.Decidable.html

Observational Equality Meets CIC 6:21

Fig. 8. The four judgments of the logical relation [LogicalRelation.agda].

that are needed to be tested before being sure that the two terms are not convertible. This also
induces a blow up in the size of the proof term which has been challenging to make bearable to
Agda’s checker. This has been achieved by using some form of open recursion and doing each case
as a separate abstract lemma to avoid extremely demanding computations in the type checking
of the decidability procedure. �

5.5 Tying the Knot: The Logical Relation and the Fundamental Lemma
So far, we have proven decidability of algorithmic conversion of two well-typed terms, assuming
reflexivity of algorithmic conversion. But actually, because reflexivity of algorithmic conversion
entails strong normalization of the system, proving it requires very involved reasoning on the
type system.

We use the logical relation setting already used by Abel et al. [2], Pujet and Tabareau [24,
25] to prove strong normalization and decidability of conversion in various type theories. The
logical relation setting is used in two instances: first with the declarative conversion to show the
normalization theorem (all well-typed terms with proof-relevant types can be reduced down to
whnf by repeatedly applying weak-head reduction), a necessary lemma for the second instance
with the algorithmic conversion to show completeness of algorithmic conversion with respect to
declarative conversion (and thus reflexivity of algorithmic conversion).

Normalization of type theories cannot be proven by a naive induction on the typing derivations,
because of the case of the application rule, where it is not possible to deduce normalization of C D from
normalization of C and D. Using logical relations is a standard technique to generalize the induction
hypothesis and collect several invariants on the system so that the proof by induction on the typing
derivation goes through. Concretely, the logical relation is a sophisticated inductive-recursive
family consisting of four predicates which mirror the four typing judgments of CICobs, presented
in Figure 8, defined on a type-by-type basis. Types and terms that satisfy the logical relation are
called reducible. Note that those predicates are indexed by a level ℓ which reflects the predicative
nature of the universe hierarchy on U: reducibility is first defined at level 0 to characterize terms
that inhabit the smallest universe U0, then this relation is used to define reducibility at level 1 for
terms that live in U1 at most, and so on. Therefore, the whole definition is done by induction on ℓ .

We do not recall the definition of the logical relation here as it closely follows the one defined
given by Pujet and Tabareau [25]. The only difference is that now observational equality does not
compute anymore on its type arguments, so it gets a proper status in the logical relation. Indeed, in
CCobs, the observational equality is seen as an eliminator but here it is considered as a standard
type constructor.

Completeness of the logical relation with respect to the type system is called the fundamental
lemma, which states that every well-typed term is reducible.

Lemma 5.4 (Fundamental lemma (for terms) [Fundamental.agda]). If Γ ` C : � : B , then there is
a level ℓ such Γ �ℓ C : � : B .

Proof. The theorem is proven by induction on the typing derivation. It involves many auxiliary
lemmas and notions that can be found in the Agda formalization but are not relevant for the
presentation of this article. �

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition..LogicalRelation.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.LogicalRelation..Fundamental.html

6:22 L. Pujet et al.

A direct consequence of the fundamental lemma for declarative conversion is that any well-typed
term has a whnf. This is proven by analyzing the definition of reducibility of a term and seeing that
every definition starts by asking that the term reduces to a whnf such that a given property holds.

Once we know weak-head normalization of well-typed terms, and thanks to admissibility of
symmetry and transitivity proven in Section 5.3, we have enough properties to replay the funda-
mental lemma with a definition of the logical relation that uses algorithmic conversion instead of
the general conversion. Note that in our formal proof, we follow Abel et al. [2] in factoring the two
instances of the fundamental lemma by defining a generic interface for both algorithmic conversion
and typed conversion, and using this interface in the definition of the logical relation. In particular,
this interface does not contains a generic reflexivity rule, which becomes a consequence of the
fundamental lemma.

Theorem 5.5 (Completeness of algorithmic conversion [Completeness.agda]). Given two
terms C and D such that Γ ` C : � : B and Γ ` D : � : B , we have that

Γ ` C ≡ D : � =⇒ Γ ` C �↓ D : �.

Given two terms C and D well-typed at � : B in context Γ, we can apply Theorem 5.6 plus the
reflexivity of declarative conversion to get that Γ ` C �↓ C : � (and similarly for D) so that this
provides decidability of declarative conversion.

Theorem 5.6 (Completeness of declarative conversion [Decidability.agda]). Given two terms
C and D such that Γ ` C : � : B and Γ ` D : � : B , knowing whether Γ ` C ≡ D : � holds is decidable.

6 Consistency of the Theory
In Section 2.3, we encountered a cautionary tale: combining the inductive scheme of CIC with an
observational equality can lead to inconsistencies if we boldly ask for the injectivity of inductive
type formers. Drawing lessons from this story, we then devised a more cautious definition of
equality, which provides weaker injectivity principles (see Section 4). Now, we would like to make
sure that this adjusted definition will not fall victim to another paradox. To this end, we build a
model of CICobs in set theory, thereby reducing the consistency of our system to the consistency of
ZFC set theory with Grothendieck universes. Our model is mostly an extension of the one that was
presented by Pujet and Tabareau [25] to general inductive definitions, using the interpretation of
inductive definitions that was developed by Timany and Sozeau [29].

6.1 Observational Type Theory in Sets
We work in ZFC set theory with a countable hierarchy of Grothendieck universes V0,V1,V2, and
so on. We write Ω := {⊥,>} for the lattice of truth values, and given ? ∈ Ω we write val ? for
the associated set {G ∈ {∗} | ?}. Since our goal is to interpret a dependent type theory, we need
set-theoretic dependent products and dependent sums. We write the former as (0 ∈ �) → (� 0),
and the latter as (0 ∈ �) × (� 0) to distinguish them from their type-theoretic counterparts.

Our model is based on the types-as-sets interpretation of dependent type theory developed
by Dybjer [12], according to which contexts are interpreted as sets, types and terms over a context Γ

become sets indexed over the interpretation of Γ, the typing relation corresponds to set membership,
and conversion is interpreted as the set-theoretic equality. Such models have already been defined
for a wide variety of type theories; of particular interest to us is the model of Timany and Sozeau
[29] which supports an impredicative sort of propositions (interpreted as the lattice of truth values)
and the full scheme of inductive definitions of CIC. Since ZFC set theory is extensional by nature,
this model also validates the principles of function extensionality and proposition extensionality,
which would almost make it a model of CICobs, were it not for two small issues.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Conversion.Consequences..Completeness.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Typed.Consequences..Decidability.html

Observational Equality Meets CIC 6:23

Fig. 9. Codes for universes, dependent products, and inductive types.

The first issue is the absence of observational equality and of the cast operator in the model of
Timany and Sozeau. We can easily fix this by interpreting observational equality as the set-theoretic
equality and cast as the identity function.Thatway, cast satisfies all the desired equations for trivial
reasons, including the rule Cast-Refl. After all, the model does not differentiate between conversion
and propositional equality! The second issue is a bit more serious and deals with the universes.
Timany and Sozeau [29] directly interpret the type-theoretic universes as the corresponding
Grothendieck universes, which is perfectly fine for CIC. But this does not work for CICobs, as we
would lose the injectivity of dependent products: consider for instance the two types Empty→ N and
Empty→ B. Both are interpreted as a singleton set in ZFC, but we can prove that they are different
in CICobs. To recover this injectivity, we will modify the model and label the sets in the universe
with additional information that indicates how they were built. This way, the type Empty→ N is
interpreted as a singleton set and an indication that it is a function type from Empty to N, while
Empty→ B has a different label.

6.2 Coinductive Labels for Inductive Types
In this section, we give a proper definition for our labeled universe. The technique of using labels
to build a universe that is generic for sets and ensures the injectivity of dependent products is a
re-reading of the technique of Gratzer [15]. However, his construction seems difficult to extend with
parametrized inductive types—the use of induction-recursion seems to force us to have injectivity
on inductive parameters, which we do not want (cf Section 2.3). Therefore we ditch induction-
recursion for a definition that is somewhat more set-theoretic: our interpretation of the universe
U8 is simply V8 × V8 , meaning that a code in the universe is a pair of sets. The first set of the pair is
the (semantic) type, and the second set is the label. The “El” function that transforms a code into a
type is thus simply the first projection.

Figure 9 shows the interpretation for the proof-relevant type formers of CICobs. The interpretation
that transforms a syntactic object into a semantic object is written JΓ ` _Kd , where d is a set-
theoretic function that assigns a set to every variable of the context Γ. Unsurprisingly, the syntactic
universes U8 and Ω are interpreted as their semantic counterparts, with the default label (the empty
set). Proof-relevant dependent products also are interpreted as their set-theoretic counterparts, but
in that case the label contains the domain and the codomain, ensuring that two dependent products
are not identified unless their domain and codomain are themselves equal. Lastly, the interpretation
of inductive types is a bit more involved. Thankfully, we only need to explain the interpretation for
non-indexed inductive types, as we decided to handle indices using Fordism (cf Section 4.2). Thus,
consider a non-indexed inductive definition Ind, with a vector of parameters ®�:

Inductive Ind (®0 : ®�) : Uℓ :=
| 20 : ∀ (®1 : ®�0), Ind ®0
| …
| 2= : ∀ (®1 : ®�=), Ind ®0

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:24 L. Pujet et al.

In order to interpret this inductive family in our model, we need to associate a pair of sets
〈 IndElem ®- , IndLabel ®- 〉 to any vector ®- of elements of the family of sets fst(J ®� Kd). The defini-
tion of the first set follows the interpretation of inductive types given by Timany and Sozeau [29].
Reproducing their construction in full detail would take us too far from the scope of this article, so
we simply mention that IndElem ®- is the initial algebra for the endofunctor on (fst J ®� Kd)-indexed
families corresponding to Ind, evaluated in ®- . This initial algebra is well-defined as soon as the
definition of Ind is strictly positive and all the interpretations of the ®�8 are well-defined. This gives
us the first projection of J Γ ` Ind ®- Kd , and now we need to define the second projection, which
will play the role of the label—i.e., it will only play a part in the definition of equalities between
inductive types. Recall from Section 4 that we would like the equality of two instances of Ind to
satisfy:

Ind ®- ∼ Ind ®. ←→ (®�0 (®-), ..., ®�= (®-)) ∼ (®�0 (®.), ..., ®�= (®.)) .
In other words, Ind should be determined up to equality by the types of its constructor arguments.
Therefore, a natural option would be to define its label directly as the list of these types:

IndLabel ®- = (JΓ, ®� ` ®�0K(d, ®-) , ..., JΓ, ®� ` ®�=K(d, ®-)). (1)

However, remark that ®�8 may contain a recursive call to Ind (possibly with a different parameter),
whose interpretation is defined using IndLabel, so this “definition” is actually an equation that we
need to solve. Admittedly, the equation is a bit notation-heavy and abstract because of its generality,
so let us first try solving it for the special case of lists. The datatype of lists has two constructors:
one without arguments for the empty list, and one with two arguments for appending an element
to a list. The equation thus becomes

ListLabel - = ({∗}, (-, ListLabel -)) . (2)

A simple look at the shape of that equation reveals that it is in fact the definition of a generalized
stream, i.e., an infinite tree whose nodes are labeled with sets. It is not too difficult to encode such
recursive streams in set theory (e.g., as families of sets indexed by natural numbers) provided they
are productive, as is the case here. Thus, we define ListLabel to be the set-theoretic encoding of
the stream defined by Equation (2). This solution for the case of lists can be readily generalized
to a solution of Equation (1). The resulting stream may have more projections, and recursive
calls may change the argument, but it will remain productive nonetheless. We can thus take its
set-theoretic encoding as our definition of IndLabel. Remark that the resulting label is indeed an
inhabitant of Vℓ , since the sets that intervene in its construction (the interpretation of the types of
the constructor arguments and their labels) are all in Vℓ . With this definition of IndLabel, we get
the following property:

Lemma 6.1. If the inductive definition Ind is strictly positive, JΓ ` ®- Kd is well-defined, and all the
JΓ, ®� ` ®�8K(d, ®-) are well-defined, then JΓ ` Ind ®- Kd is well-defined. Furthermore, JΓ ` Ind ®- Kd =

JΓ ` Ind ®. Kd is equivalent to

∀8, JΓ, ®� ` ®�8K(d,JΓ` ®-Kd) = JΓ, ®� ` ®�8K(d,JΓ` ®.Kd) .

6.3 Soundness of the Model
The definition of the observational universe is the only new insight of our construction; the rest
follows the strategy laid out by Timany and Sozeau [29]. For the sake of completeness, we give an
outline of the definition and of the proof of soundness in this section.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:25

Fig. 10. Interpretation of contexts and proof-relevant terms of CICobs.

Ultimately, our model is defined in terms of partial functions from the syntax to the semantics.
We use a function J_K that interprets contexts as sets and a function JΓ ` _Kd that interprets
terms and types in context Γ as sets indexed by d ∈ JΓK (Figure 10). Both functions are mutually
defined by recursion on the raw syntax, and we then prove that they are total on well-typed
terms by induction on the typing derivations. Variables, lambda-abstractions, and applications are
interpreted respectively as projections from the context, set-theoretic functions, and applications.
In order to interpret the inductive constructors and the match and fix operators, we need to
develop a proper theory of set-theoretic induction. Since this part is completely orthogonal to the
observational primitives, we deem it out of the scope of this work and we refer the interested
reader to the literature instead. Timany and Sozeau [29] use induction principles instead of match
and fix, but argue that the two are equivalent. A model directly based on the latter has been
defined by Lee and Werner [16]. The ⊥ proposition is interpreted as the false proposition of ZFC,
the observational equality as the equality of ZFC, and the cast operator as the identity function.
Finally, the proof-irrelevant dependent products are interpreted as set-theoretic quantifications.
The proofs of propositions such as transport or Π1

n do not need to be interpreted—after all, the
model is proof-irrelevant.

In order to prove the soundness of our interpretation, we need to extend it to weakenings and
substitutions between contexts. Assume Γ and ∆ are syntactical contexts, and� and C are syntactical
terms. In case J Γ, G : � : B,∆ K and J Γ,∆ K are well-defined, let c� be the projection:

c� : J Γ, G : � : B,∆ K→ J Γ,∆ K (®GΓ, G�, ®G∆) ↦→ (®GΓ, ®G∆).
In case J Γ,∆[G := C] K and J Γ, G : � : B,∆ K are well-defined, we define the function fC by:

fC : J Γ,∆[G := C] K→ J Γ, G : � : B,∆ K (®GΓ, ®G∆) ↦→ (®GΓ, J Γ ` C K ®GΓ
, ®G∆) .

Lemma 6.2 (Weakening). c� is the semantic counterpart to the weakening of �: for all terms D,
when both sides are well defined, we have:

J Γ, G : � : B,∆ ` D Kd = J Γ,∆ ` D Kc� (d)

Lemma 6.3 (Substitution). fC is the semantic counterpart to the substitution by C : for all terms D,
when both sides are well defined, we have:

J Γ,∆[G := C] ` D [G := C] Kd = J Γ, G : � : B,∆ ` D KfC (d)

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:26 L. Pujet et al.

Theorem 6.4 (Soundness of the Standard Model).

(1) If ` Γ then J Γ K is defined.
(2) If Γ ` � : Ω then J Γ ` � Kd is a semantic proposition for all d ∈ J Γ K.
(3) If Γ ` � : U8 then J Γ ` � Kd is in V8 for all d ∈ J Γ K.
(4) If Γ ` C : � : Ω then J Γ ` C Kd ∈ val(J Γ ` � Kd) for all d ∈ J Γ K.
(5) If Γ ` C : � : U8 then J Γ ` C Kd ∈ fst(J Γ ` � Kd) for all d ∈ J Γ K.
(6) If Γ ` C ≡ D : � then J Γ ` C Kd = J Γ ` D Kd for all d ∈ J Γ K.

Since our model interprets the false proposition⊥ as the empty set, we get a proof of consistency:

Theorem 6.5 (Consistency). There are no proofs of ⊥ in the empty context.

We can use our model to go a bit further and prove a canonicity theorem for the inductive type of
natural numbers. A natural number is said to be canonical if it can be obtained only using zero
and successor—for instance, the natural numbers 0 and S (S 0) are canonical, while the natural
number cast(B, N, e, true) is not. In order to prove that every natural number in the empty context
is canonical, we will need the following lemma:

Lemma 6.6. There are no neutral terms in the empty context.

Proof. Looking at the definition of neutral terms from Figure 5, we see that they must contain
either a variable, a proof of ⊥ or a proof of equality between two incompatible types. Since there
are no variables in the empty context and our theory is consistent, it suffices to show that it is
impossible to prove an equality between two types with different heads. We can achieve this by
adding unique identifiers to the labels in our model, so that two incompatible types are always
interpreted as different sets. �

Theorem 6.7 (Canonicity). Any inhabitant of N in the empty context is convertible to a canonical
natural number.

Proof. By inspecting the normal forms provided by the normalization theorem, we see that
reducible inhabitants of N are convertible to either zero, a neutral term or the successor of a
reducible inhabitant of N. But there are no neutral terms in the empty context, so every natural
number is convertible to a canonical natural number by induction on the reducibility proof. �

Similar canonicity theorems can be obtained for the type of Booleans, lists, or any inductive type
without indices. However, as soon as indices are involved, the notion of canonical term must be
expanded to include cast applied to constructors.

7 Implementation in Coq
In this section, we present our implementation of CICobs on top of the Coq proof assistant. Starting
with version 8.10 (2019), Coq features an impredicative universe SProp for definitionally proof-
irrelevant types [13], which we use for our universe of propositions Ω. Thus, it remains to define
our observational equality in SProp, along with its associated cast operator and their various rules.
Our main tool for this task is the recent extension of Coq with rewrite rules, as implemented by
Gilbert et al. [14]. However, these rules are not quite expressive enough for our needs, and therefore
we will have to extend them in the process.

7.1 Rewrite rules for CICobs

We start by defining observational equality as an inductive type family in SProp, so that all the
infrastructure and the tactics that apply to the usual inductive equality (such as rewrite, symmetry…)
may still work with the observational equality:

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:27

Inductive obseq (A : Type) (a : A) : A→ SProp :=
| obseq_refl : obseq A a a.
Notation "a ∼ b" := obseq _ a b.

This definition already provides us with a transport operator for proof-irrelevant predicates. Indeed,
Coq automatically generates eliminators à la Martin-Löf for each inductive definition, which are
defined in terms of the primitive match and fix operators. Here, our inductive family is defined in
SProp, which means that using match on a prof of obseq is only allowed when the return predicate
is itself defined in SProp. As a consequence, the Martin-Löf style eliminator generated by Coq is
restricted to propositional predicates, which corresponds precisely to our transport operator. Thus,
it remains to define the typecasting operator to handle elimination in Type.

In order to define typecasting along with its various reduction rules, we use rewrite rules, which
were introduced by Cockx et al. [10] and recently implemented in Coq by Gilbert et al. [14]. This
extension of Coq allows us to extend the language with a new constant using the keyword Symbol,
and then add reduction rules for the symbol by using the Rewrite Rule command. Thus, we start by
defining the cast operator and its accompanying notation:

Symbol cast : ∀ (A B : Type), A ∼ B→ A→ B.
Notation "e # a" := cast _ _ e a.

Then, we need to equip every type former of Coq with the logical rules that characterize the
observational equality on this type and the rewrite rules for cast. Let us have a look at the case of
dependent function types first: on the logical side, we add the two projections out of an equality
between dependent function types Eq-Π1 and Eq-Π2, as well as the extensionality of functions:

Parameter seq_∀1 : ∀ {A A’ B B’}, (∀ (x : A), B x) ∼ (∀ (x : A’), B’ x)→ A’ ∼ A.
Parameter seq_∀2 : ∀ {A A’ B B’} e (x : A’), B (seq_∀1 e # x) ∼ B’ x.
Parameter funext : ∀ {A B} (f g : ∀ (x : A), B x), (∀ x, f x ∼ g x)→ f ∼ g.

Since these three terms are irrelevant, we postulate them as parameters and not symbols. After all,
irrelevant terms cannot block computations, so there is no need to equip them with rewrite rules.
Finally, the reduction rule for casting a dependent function (Rule Cast-Π-red) is added as follows:

Rewrite Rule cast∀ :=
cast (∀ (x : ?A), ?B) (∀ (x : ?A’), ?B’) ?e ?f � fun x⇒ seq_∀2 ?e x # ?f (seq_∀1 ?e # x).

The term on the left of the � symbol is the pattern of the rewrite rule. Whenever the reduction
engine encounters a term that matches this pattern in head position, it reduces to the right-hand
side, substituting the existential variables (which are marked with “?”) with corresponding subterms
of the matched term. We can implement the observational rules for the sort SProp in a similar
manner: we add one parameter for the principle of proposition extensionality, as well as a rewrite
rule which states that using cast from SProp to SProp amounts to the identity.

Parameter propext : ∀ {P Q : SProp}, (P↔ Q)→ P ∼ Q

Rewrite Rule cast_sprop := cast SProp SProp ?e ?P � ?P.

7.2 Rewriting with Equations
Rewrite rules are a convenient tool for implementing our system without having to modify the
kernel of Coq, thereby minimizing the risk of introducing critical bugs. However, the rules as
implemented by Gilbert et al. [14] are not quite powerful enough for our purposes, in particular

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:28 L. Pujet et al.

because they do not provide a way to implement the rule Cast-Refl.
Cast-Refl
Γ ` � ≡ � : B Γ ` 4 : � ∼B � Γ ` C : � : B

Γ ` cast � � 4 C ≡ C : � : B

In order to implement this rule according to the decidability proof of Theorem 5.6, we need to
modify the conversion checking algorithm of Coq to deal with casts on reflexivity proofs. However,
we only have a hook to the reduction algorithm. To solve this tension, we remark that there is an
alternative way to treat Rules Cast-refl-L and Cast-refl-R by using rewriting. Indeed, in those
rules, only one side of the equality is modified (by removing a cast) and the other is unchanged.
This means that the alternative neutral reduction rule

Cast-refl-red
Γ ` � � � : B Γ ` 4 : � ∼B � : Ω neutral (cast � � 4 C) neutralD

Γ ` cast � � 4 C ⇒=4 C : �

together with rules that say that neutral reduction preserves neutral conversion (on both arguments)
performs the same check:

Cast-red-L
Γ ` C ⇒=4 C

′ : � Γ ` C ′ �=4 D : �

Γ ` C �=4 D : �

Cast-red-R
Γ ` D ⇒=4 D

′ : � Γ ` C �=4 D′ : �
Γ ` C �=4 D : �

The only difficulty with this presentation is that the reduction rule Cast-refl-red requires con-
version checking as a precondition. To fulfill this requirement, we extend the syntax of rewrite
rules with equations:
Rewrite Rule cast_refl := [?A = ?B] ` cast ?A ?B ?e ?t � ?t.

Now, whenever the reduction machine encounters a term that matches the pattern, it will perform a
convertibility check between the two sides of the equations before performing the rewrite. In order
to add this call to the conversion checker during reduction, we reused part of the implementation
of UIP in SProp done by Gilbert et al. [13, §4.4].

Actually, equations also play a role in the computation of cast on the universe of types. In Coq,
the universe hierarchy Type is indexed by universe levels which are traditionally hidden to the user,
but which play an important part in keeping the theory consistent. If we were to add the naive
reduction rule cast Type Type e t � t without making sure that the universe levels match, then we
would allow coercions from large universes to small universes in an inconsistent context, which
would break the decidability of typechecking. The correct rule must therefore check an equation
between levels before firing, which one might write as follows:
Rewrite Rule cast_type@{u v} := [u = v] ` cast Type@{u} Type@{v} ?e ?t � ?t,

where the@{u} annotationsmake the hidden universe levels explicit. But this rule is in fact subsumed
by cast−refl, and thus there is no need to add it. In fact, our syntax does not really support equations
between universe levels, they can only be compared indirectly through an equation between terms.

7.3 Generating Equality and Cast for Parametrized Inductive Types
We now turn our attention to inductive types. As with all the other type formers, they should
be equipped with rules for observational equality and for the cast operator. However, unlike
the type formers that we have covered so far, the set of inductive types is not fixed in advance.
Instead, Coq provides the user with a scheme for inductive definitions, that they may use to
extend the language with a new type family whenever they need it. As a result, we cannot add the
rules for inductives types once and for all; we are forced to generate them dynamically whenever

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:29

the user defines a new inductive type. To this end, we modified the behavior of the Inductive

command. Traditionally, this command adds the new inductive type to the global environment
and generates eliminators from the match and fix primitives. Now, once the user sets the new flag
Set Observational Inductives, this command additionally generates all the observational data that
we described in Section 4.

Let us first look at how this works for inductive definitions that have parameters but no indices.
In that case, we automatically generate a family of projections that turn equalities between two
instances of the inductive type into equalities between the types of the constructor arguments,
as well as a family of rewrite rules for cast applied to a constructor. For instance, consider the
following definition of the type of lists:

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A→ list A→ list A.

In that case, the constructor nil has no arguments, and the constructor cons has two, namely A and
list A. Thus, our implementation automatically generates two projections (one for each constructor
argument), as well as two rewrite rules (one for each constructor):

Parameter obseq_cons0 : ∀ A A0, list A ∼ list A0→ A ∼ A0.
Parameter obseq_cons1 : ∀ A A0, list A ∼ list A0→ list A ∼ list A0.
Rewrite Rule cast_nil :=

cast (list _) (list ?A0) ?e (nil ?A) � nil ?A0.
Rewrite Rule cast_cons :=

cast (list _) (list ?A0) ?e (cons ?A ?a ?l) �
let a0 := (obseq_cons0 ?A ?A0 ?e) # ?a in

let l0 := (obseq_cons1 ?A ?A0 ?e) # ?l in

cons ?A0 a0 l0

Remark that the projection obseq_cons1 is not particularly useful, and it could be interesting to try
and refine our scheme to simplify away trivial projections. But we leave this for future work, and
for now we turn ourselves to the more pressing issue of inductive types with indices.

7.4 Automating the Fording Translation
As we explained in Section 2.2, indexed inductive definitions gain new inhabitants in presence
of the observational equality, because casts on indices cannot reduce to a constructor in general.
This phenomenon is unavoidable, and in fact it also appears in the slightly different setting of
cubical type theories, where Cavallo and Harper [9] handle these new terms with an operator
called fcoe that can be applied to a constructor in order to build a new canonical inhabitant of the
inductive, but with a different index. Our approach is based on the Fordism encoding, which is a
somewhat more principled way to arrive at the same result. Let us look at it in action on the type
of length-indexed vectors:

Inductive vect (A : Type) : N→ Type :=
| vnil : vect A 0
| vcons : ∀ (a : A) (m : N) (v : vect A m), vect A (S m).

Our implementation starts by generating forded constructors which explicitly state the equality
between integers that is implied by the indexing. These forded constructors are equivalent to
fcoe (vnil) and fcoe (vcons) with the notation of Cavallo and Harper [9].

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:30 L. Pujet et al.

Symbol vnil_cast : ∀ (A : Type) (n : N), n ∼ 0→ vect A n.
Symbol vcons_cast : ∀ (A : Type) (n : N) (a : A) (m : N) (v : vect A m), n ∼ S m→ vect A n.

Now the “standard” constructors vnil and vcons are supposed to represent the same vector as a
forded constructor whose last argument is equal to a proof by reflexivity. At that point, we could
decide to remove the standard constructors and work exclusively with the better-behaved forded
constructors. However, we want our observational Coq to remain as compatible as possible with
existing developments, and thus we go the extra mile and keep both kinds of constructors, with
rewrite rules that ensure the forded constructors reduce to the standard ones whenever their indices
match those of the corresponding standard constructor:
Rewrite Rule vnil_cast_refl := [?n = 0] ` vnil_cast ?A ?n ?e � vnil ?A.
Rewrite Rule vcons_cast_refl := [?n = S ?m] ` vcons_cast ?A ?n ?a ?m ?v ?e � vcons ?A ?a ?m ?v.

Finally, in order to complete the Fordism translation, it remains to add rules for the interaction of
match and fix with the forded constructors. For the fix operator, the interaction is quite simple:
we only need to make sure that fixpoints unfold on the forded constructors as if they were
regular constructors. To do this, we equip every symbol with a flag that states whether the symbol
causes unfolding of fixpoints in the reduction machine, and we set this flag to true for the forded
constructors. The interaction with match, on the other hand, is a bit more complicated. Basically,
doing pattern-matching on a forded constructor should reduce to a cast of the corresponding branch:
Rewrite Rule match_vnil_cast :=

match vnil_cast ?A ?n ?e as v in vect _ m return ?P with
| vnil _⇒ ?t
| vcons _ a m v⇒ _

end �
let e := sym (ap_ty2 ?P ?e obseq_refl) in
cast ?P@{m = 0 ; v = vnil ?A} ?P@{m = ?n ; v = vnil_cast ?A ?n ?e} e ?t.

Here, we use the extended syntax for match to signify that the return predicate ?P depends on
both the index m (of type N) and the vector v (of type vect ?A m). In order to use the branch ?t
which corresponds to vnil, we must provide a proof of equality between the return predicate ?P
instantiated with 0 and vnil on the one hand, and ?P instantiated with ?n and vnil_cast on the
other hand. We can get this equality from the argument ?e of the forded constructor (which has
type ?n ∼ 0) but in practice, performing this sort of dependent transport is quite tedious. Therefore,
we define in advance a family of operators {ap_ty}8 that perform these dependent transport along
a telescope of size 8 . All things considered, this difficulty would be most elegantly resolved by
switching to a heterogeneous equality à la Altenkirch et al. [5], but we stick to the homogeneous
equality out of compatibility concerns.

Now that we have the forded constructors, we can apply the recipe for inductive types without
indices from the previous section. We generate a projection for every argument of the forded
constructors:
Parameter obseq_vnil0 : ∀ A A0 n n0, vect A n ∼ vect A0 n0→ (n ∼ 0) ∼ (n0 ∼ 0).
Parameter obseq_vcons0 : ∀ A A0 n n0, vect A n ∼ vect A0 n0→ A ∼ A0.
Parameter obseq_vcons1 : ∀ A A0 n n0 (e : vect A n ∼ vect A0 n0),
∀ (a : A), let a0 := obseq_vcons0 A A0 n n0 e # a in N ∼ N.

Parameter obseq_vcons2 : ∀ A A0 n n0 (e : vect A n ∼ vect A0 n0),
∀ (a : A), let a0 := obseq_vcons0 A A0 n n0 e # a in

∀ (m : N), let m0 := obseq_vcons1 A A0 n n0 e a # m in vect A n ∼ vect A0 n0.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:31

Parameter obseq_vcons3 : ∀ A A0 n n0 (e : vect A n ∼ vect A0 n0),
∀ (a : A), let a0 := obseq_vcons0 A A0 n n0 e # a in

∀ (m : N), let m0 := obseq_vcons1 A A0 n n0 e a # m in

∀ (v : vect A n), let v0 := obseq_vcons2 A A0 n n0 e a m # v in (n ∼ S m) ∼ (n0 ∼ S m0).

And on top of that, we get rewrite rules for cast on forded constructors. Since we kept the regular
constructors around, we must also equip them with rewrite rules for the cast operator. In that case,
we simply re-use the rule for the forded constructor, replacing the last argument with a proof by
reflexivity:

Rewrite Rule cast_vnil_cast :=
cast (vect _ _) (vect ?A0 ?n0) ?e (vnil_cast ?A ?n ?o) �
let o0 := castP (?n ∼ 0) (?n0 ∼ 0) (obseq_cnil0 ?A ?A0 ?n ?n0 ?e) ?o in
vnil_cast ?A0 ?n0 o0.

Rewrite Rule cast_vnil :=
cast (vect _ _) (vect ?A0 ?n0) ?e (vnil ?A) �
let o0 := castP (0 ∼ 0) (?n0 ∼ 0) (obseq_cnil0 ?A ?A0 0 ?n0 ?e) obseq_refl in
vnil_cast ?A0 ?n0 o0.

And likewise for cast of vcons. Note that because cast does not apply between two inhabitants of
SProp, we use a computationally irrelevant replacement castP to transport equality proofs. This
operator has a straightforward definition in terms of the eliminator for obseq.

7.5 Subtleties around Universe Levels
Following the Coq tradition, we have hidden all the universe levels in our presentation of the
implementation. However, the management of universe levels with rewrite rules is all but trivial.
In particular, we have to make sure that all the universe levels that appear on the right-hand side
of a rule also appear on the left-hand side, otherwise we would need to synthesize them during
reduction. Let us have a brief look at the problems this might cause.

First, remark that in the right-hand side of the rule match_nil_vcast, we are using an observational
equality between two instances of ?P, where ?P is the return predicate of an arbitrary match
statement. But in order to do this, it is in fact necessary to know the type of ?P, as this type is
an implicit argument of the observational equality. And since ?P is itself a type, its type should
be Type@{u} for some universe level u. Unfortunately, this universe level appears nowhere on the
left-hand side of the rewrite rule, which breaks our golden rule. We fixed this by modifying the
kernel of Coq to annotate all match statements with the universe level of the return predicate. This
way, the level u appears on the left-hand side of the rewrite rule, as part of the match statement.
Unfortunately, this is not enough to solve our universe issues. The observational equality type
requires a second universe level! Indeed, once we explicitly display all the universe levels, the
definition of the observational equality looks like this:

Inductive obseq@{v} (A : Type@{v}) (a : A) : A→ SProp :=
| obseq_refl : obseq A a a.

Thus, if we want to set A := Type@{u}, we must find another universe level v which is strictly larger
than u. But no such level appears on the left-hand side of rule match_nil_vcast, and we are stuck
once again. Thankfully, Sozeau [27] recently implemented algebraic universes for the Coq proof
assistant using the algorithm recently proposed by Bezem and Coquand [8]. This new feature allows
algebraic expressions such as u+1 to be used in universe instances, which does solve our problem:
now all the universe variables that appear on the right-hand side of match_nil_vcast also appear
on the left-hand side.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

6:32 L. Pujet et al.

7.6 Quotient Types
Observational type theories provide an ideal framework for quotient types, since we can use the
observational equality to specify the equality of a type to be any desired relation—as long as said
relation is preserved by all the constructs of type theory. Thus, we extend our implementation of
CICobs in Coq with basic quotient types: given a type A and a binary relation R on A, we define
Quotient A R as having the same elements as A, but with the additional requirement that any two
elements related by R become equal in Quotient A R.
Symbol Quotient : ∀ (A : Type) (R : A→ A→ SProp), Type.
Symbol quo : ∀ (A : Type) (R : A→ A→ SProp) (a : A), Quotient A R.
Parameter quo_eq : ∀ (A : Type) (R : A→ A→ SProp) (a b : A), R a b→ (quo A R a) ∼ (quo A R b).

Then, the elimination principle for Quotient A R encodes the universal property of quotients: in
order to define a function of type Quotient A R→ X, it is sufficient to define a function f : A→ X that
sends any two elements in R to equal images. Furthermore, the resulting function should reduce to
f when supplied with elements of the form quo a. The dependent version of this principle can be
stated as follows:
Symbol Quotient_rect : ∀ (A : Type) (R : A→ A→ SProp) (P : Quotient A R→ Type)

(Pquo : ∀ (a : A), P (quo A R a))
(Prel : ∀ (a b : A) (H : R a b), cast _ _ (ap P (quo_eq A R a b H)) (Pquo a) ∼ Pquo b)
(x : Quotient A R), P x.

Rewrite Rule quo_rew := Quotient_rect _ _ ?P ?Pquo ?Prel (quo ?A ?R ?a) � ?Pquo ?a.

We also add an eliminator for SProp valued predicates. This one is a bit simpler, since it does not
need to make sure that Pquo sends elements in R to equal images thanks to proof irrelevance, and it
does not need a computation rule either.
Parameter Quotient_sind : ∀ (A : Type) (R : A→ A→ SProp) (P : Quotient A R→ SProp)

(Pquo : ∀ (a : A), P (quo A R a))
(x : Quotient A R), P x.

These operators provide the introduction, elimination, and computation rules for our quotient
types. Now, it remains to add rules that describe their interactions with the observational equality
and the cast operator. Using Quotient_rect and Quotient_sind, we can already show that the ob-
servational equality between two elements of Quotient A R is equivalent to the reflexive, symmetric
and transitive closure of the relation R. Therefore, the observational equality on quotient types is
fully characterized by their eliminator, just like for the inductive types, and thus we will only need
a rule that helps us describe the equality between Quotient A R and Quotient A’ R’:
Parameter obseq_Quotient : ∀ A A’ R R’, Quotient A R ∼ Quotient A’ R’→ A ∼ A’.

This rule provides injectivity for the support A, which is strongly anti-univalent, but expected for a
set-truncated type theory such as CICobs. Note that we have chosen not to have injectivity for the
relation R (or for its transitive closure). We don’t need it, so we might as well let the user decide if
they want to postulate such a principle. Lastly, we add the computation rule for the cast operator
on quo:
Rewrite Rule cast_quo :=
cast (Quotient _ _) (Quotient ?A’ ?R’) ?e (quo ?A ?R ?a)
� quo ?A’ ?R’ (cast ?A ?A’ (obseq_Quotient ?e) ?a).

This concludes our overview of quotient types. Readers who are familiar with the Lean proof
assistant may have noticed that our approach is very similar to the one used in Lean’s quotient types
and may thus wonder whether it also introduces non-canonical terms. Thankfully, this is not the

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

Observational Equality Meets CIC 6:33

case: the reason why quotients break the canonicity property in Lean is because they can be used
to show function extensionality, and the J eliminator will get stuck when asked to coerce between
two types that are extensionally equal but not convertible.6 In CICobs however, the J eliminator is
defined in terms of the cast operator, which is compatible with function extensionality. In fact, the
reader may convince themselves that it is not too difficult to adapt our canonicity proof to support
quotient types.

8 Conclusion and Future Work
We proposed a systematic integration of indexed inductive types with an observational equality,
by defining a notion of observational equality that satisfies the computational rule of Martin-Löf’s
identity type and by using Fordism, a general technique to faithfully encode indexed inductive types
with non-indexed types and equality. We developed a formal proof that this additional computation
rule, although not present in previous works on observational equality, can be integrated to
the system without compromising the decidability of conversion. This extension of CIC with an
observational equality has been implemented at the top of the Coq proof assistant by using the
recently introduced rewrite rules.

Although the technique has been developed in the setting of CIC and Coq specifically, there is
no obstacle to adapt it to other settings such as Lean or Agda. Adaptation to Lean should be pretty
straightforward as it is sharing most of its metatheory with Coq. A partial version of CICobs could
be implemented in Agda with rewrite rules. However, the management of elimination of inductive
types in Agda is not done using an explicit pattern-matching syntax à la Coq, for which we can
define new reduction rules. Instead, functions on inductive types are defined using case splitting
trees and an exhaustivity checker. Therefore, a proper treatment of CICobs in Agda would require
modifications of the case splitting engine, similarly to what has been done by Vezzosi et al. [31] for
Cubical Agda.

9 Data Availability Statement
The Agda companion formalization is available both on GitHub and as a long-term archived
artifact [26].
The prototype implementation on top of the Coq proof assistant is available at https://github.com/
loic-p/coq.

References
[1] Andreas Abel and Thierry Coquand. 2020. Failure of normalization in impredicative type theory with proof-irrelevant

propositional equality. Logical Methods in Computer Science 16, 2 (Jun. 2020). DOI: https://doi.org/10.23638/LMCS-
16(2:14)2020

[2] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of conversion for type theory in type theory.
Proceedings of the ACM on Programming Languages 2, POPL, Article 23 (Jan. 2018), 29 pages. DOI: https://doi.org/10.
1145/3158111

[3] Guillaume Allais, Conor McBride, and Pierre Boutillier. 2013. New equations for neutral terms: A sound and complete
decision procedure, formalized. In Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-Typed Programming
(DTP ’13). ACM, New York, NY, 13–24. DOI: https://doi.org/10.1145/2502409.2502411

[4] Thorsten Altenkirch and Conor McBride. 2006. Towards observational type theory. Retrieved from http://www.
strictlypositive.org/ott.pdf

[5] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now! In Proceedings of the
Workshop on Programming Languages meets Program Verification (PLPV ’07). 57–68. DOI: https://doi.org/10.1145/
1292597.1292608

[6] Bob Atkey. 2017. Simplified observational type theory. Retrieved from https://github.com/bobatkey/sott

6For instance, one can define a noncanonical integer in Lean by coercing an inhabitant of ∀ (n : N), Finset (1 + n) to the
type ∀ (n : N), Finset (n + 1), and then applying the resulting function to zero.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://github.com/CoqHott/logrel-mltt/tree/impredicativity-cast-compute-refl
https://github.com/loic-p/coq
https://github.com/loic-p/coq
https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1145/2502409.2502411
http://www.strictlypositive.org/ott.pdf
http://www.strictlypositive.org/ott.pdf
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://github.com/bobatkey/sott

6:34 L. Pujet et al.

[7] Henk P. Barendregt. 1993. Lambda calculi with types. In Handbook of Logic in Computer Science (Vol. 2) Background:
Computational Structures, Oxford University Press, Inc., 117–309.

[8] Marc Bezem and Thierry Coquand. 2022. Loop-checking and the uniform word problem for join-semilattices with an
inflationary endomorphism. Theoretical Computer Science 913 (2022), 1–7. DOI: https://doi.org/10.1016/j.tcs.2022.01.
017

[9] Evan Cavallo and Robert Harper. 2019. Higher inductive types in cubical computational type theory. Proceedings of
the ACM on Programming Languages 3, POPL, Article 1 (Jan. 2019), 27 pages. DOI: https://doi.org/10.1145/3290314

[10] Jesper Cockx, Nicolas Tabareau, andThéoWinterhalter. 2021.The taming of the tew: A type theory with computational
assumptions. Proceedings of the ACM on Programming Languages 5, POPL, Article 60 (Jan. 2021), 29 pages. DOI:
https://doi.org/10.1145/3434341

[11] The Coq Development Team. 2024. The COQ proof assistant reference manual. Zenodo, DOI: https://doi.org/10.5281/
zenodo.14542673

[12] Peter Dybjer. 1991. Inductive Sets and Families in Martin-Löf’s Type Theory and Their Set-Theoretic Semantics. Cambridge
University Press, 280–306.

[13] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional proof-irrelevance without K.
Proceedings of the ACM on Programming Languages 3 (Jan. 2019), 1–28. DOI: https://doi.org/10.1145/3290316

[14] Gaëtan Gilbert, Yann Leray, Nicolas Tabareau, and Théo Winterhalter. 2023. The Rewster: The Coq proof assistant
with rewrite rules. In 29th International Conference on Types for Proofs and Programs. Retrieved from https://github.
com/Yann-Leray/coq#readme

[15] Daniel Gratzer. 2022. An inductive-recursive universe generic for small families. arXiv: 2202.05529. Retrieved from
https://doi.org/10.48550/arXiv.2202.05529

[16] Gyesik Lee and Benjamin Werner. 2011. Proof-irrelevant model of CC with predicative induction and judgmental
equality. Logical Methods in Computer Science 7, 4 (Nov. 2011). DOI: https://doi.org/10.2168/lmcs-7(4:5)2011

[17] Meven Lennon-Bertrand. 2021. Complete bidirectional typing for the calculus of inductive constructions. In Proceedings
of the 12th International Conference on Interactive Theorem Proving (ITP ’21). Liron Cohen and Cezary Kaliszyk (Eds.),
Leibniz International Proceedings in Informatics (LIPIcs), Vol. 193, Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
DOI: https://doi.org/10.4230/LIPIcs.ITP.2021.24

[18] Meven Lennon-Bertrand. 2022. Bidirectional Typing for the Calculus of Inductive Constructions. Ph. D. Dissertation.
Nantes Université. Retrieved from https://theses.hal.science/tel-03848595

[19] Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H. E. Rose and
J. C. Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73 – 118. DOI:
https://doi.org/10.1016/S0049-237X(08)71945-1

[20] Conor McBride. 2000. Dependently Typed Functional Programs and their Proofs. Ph. D. Dissertation. University of
Edinburgh.

[21] Conor McBride. 2011. Hier Soir, an OTT hierarchy. Blog post. Retrieved from https://mazzo.li/epilogue/index.html%
3Fp=1098.html

[22] Alexandre Miquel. 2001. Le Calcul des Constructions Implicites. Ph. D. Dissertation. Université Paris Diderot. Retrieved
from https://github.com/coq-contribs/paradoxes/blob/master/Russell.v

[23] Christine Paulin-Mohring. 1993. Inductive definitions in the system Coq rules and properties. In Typed Lambda
Calculi and Applications, Marc Bezem and Jan Friso Groote (Eds.), Springer Berlin, Heidelberg, 328–345.

[24] Loïc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now For Good. Proceedings of the ACM on Programming
Languages 6, POPL (Jan. 2022), 1–29. DOI: https://doi.org/10.1145/3498693

[25] Loïc Pujet and Nicolas Tabareau. 2023. Impredicative observational equality. Proceedings of the ACM on Programming
Languages 7, POPL, Article 74 (Jan. 2023), 26 pages. DOI: https://doi.org/10.1145/3571739

[26] Loïc Pujet and Nicolas Tabareau. 2024. A logical relation for observational equality meets CIC. Retrieved from
https://doi.org/10.5281/zenodo.10499152

[27] Matthieu Sozeau. 2024. Algebraic universes and new solving algorithm. Retrieved from https://github.com/coq/coq/
pull/18903

[28] Andrew Swan. 2016. An algebraic weak factorisation system on 01-substitution sets: A constructive proof. Journal of
Logic and Analysis (2016). DOI: https://doi.org/10.4115/jla.2016.8.1

[29] Amin Timany and Matthieu Sozeau. 2017. Consistency of the Predicative Calculus of Cumulative Inductive Constructions
(pCuIC). Research Report RR-9105. KU Leuven, Belgium ; Inria Paris, 32 pages. Retrieved from https://inria.hal.
science/hal-01615123

[30] Benno van den Berg and Richard Garner. 2010. Types are weak l-groupoids. Proceedings of the London Mathematical
Society 102, 2 (Oct. 2010), 370–394. DOI: https://doi.org/10.1112/plms/pdq026.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://doi.org/10.1016/j.tcs.2022.01.017
https://doi.org/10.1016/j.tcs.2022.01.017
https://doi.org/10.1145/3290314
https://doi.org/10.1145/3434341
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.1145/3290316
https://github.com/Yann-Leray/coq#readme
https://github.com/Yann-Leray/coq#readme
https://doi.org/10.48550/arXiv.2202.05529
https://doi.org/10.2168/lmcs-7(4:5)2011
https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://theses.hal.science/tel-03848595
https://doi.org/10.1016/S0049-237X(08)71945-1
https://mazzo.li/epilogue/index.html%3Fp=1098.html
https://mazzo.li/epilogue/index.html%3Fp=1098.html
https://github.com/coq-contribs/paradoxes/blob/master/Russell.v
https://doi.org/10.1145/3498693
https://doi.org/10.1145/3571739
https://doi.org/10.5281/zenodo.10499152
https://github.com/coq/coq/pull/18903
https://github.com/coq/coq/pull/18903
https://doi.org/10.4115/jla.2016.8.1
https://inria.hal.science/hal-01615123
https://inria.hal.science/hal-01615123
https://doi.org/10.1112/plms/pdq026

Observational Equality Meets CIC 6:35

[31] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical agda: A dependently typed programming language
with univalence and higher inductive types. Proceedings of the ACM on Programming Languages 3, ICFP, Article 87
(Jul. 2019), 29 pages. DOI: https://doi.org/10.1145/3341691

[32] Benjamin Werner. 2006. On the strength of proof-irrelevant type theories. In Automated Reasoning. Ulrich Furbach
and Natarajan Shankar (Eds.), Springer Berlin, Heidelberg, 604–618.

Received 26 April 2024; revised 1 December 2024; accepted 4 February 2025

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 6. Publication date: April 2025.

https://doi.org/10.1145/3341691

	Abstract
	1 Introduction
	2 Observational Equality Meets Calculus of Inductive Constructions (CIC) at Work
	2.1 Lists
	2.2 Indices and Fordism
	2.3 Parameters and Equalities

	3 An Observational Type Theory with Martin-Löf's Computation Rule
	3.1 The Syntax of CCobs
	3.2 The Typing Rules of CCobs
	3.3 Conversion

	4 Inductive Definitions
	4.1 Inductive Definitions without Indices
	4.2 Deriving a Scheme for Indexed Inductive Types

	5 Decidability of Conversion
	5.1 Reduction to whnf
	5.2 Algorithmic Conversion
	5.3 Symmetry and Transitivity of Algorithmic Conversion
	5.4 Decidability of Algorithmic Conversion
	5.5 Tying the Knot: The Logical Relation and the Fundamental Lemma

	6 Semantics of CCobs
	6.1 Observational Type Theory in Sets
	6.2 Coinductive Labels for Inductive Types
	6.3 Soundness of the Model

	7 Implementation in Coq
	7.1 Rewrite rules for CICobs
	7.2 Rewriting with Equations
	7.3 Generating Equality and Cast for Parametrized Inductive Types
	7.4 Automating the Fording Translation
	7.5 Subtleties around Universe Levels
	7.6 Quotient Types

	8 Conclusion and Future Work
	9 Data Availability Statement
	References

