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At the heart of homotopy type theory (HoTT) is the analogy between types and spaces.
This permits the use of type theory as a language for algebraic topology, i.e. for the study
of spaces and maps between spaces up to homotopy by means of algebraic invariants, such as
homotopy groups [13, 1, 4] and (co)homology groups [9, 5, 3, 14, 7, 2, 6, 8, 10]. Although the
methods of algebraic topology apply to very general notions of spaces, the theory is often easier
to develop in the context of a more restricted and well-behaved class: CW complexes. As such,
it is natural to define CW complexes in the language of HoTT, in order to obtain a notion of
spaces which is easier to work with than arbitrary types.

In this work, we revisit the definition of CW complexes given by Buchholtz and Favonia [3]
and develop their theory. In particular, we focus on the cellular approximation theorem, a
cornerstone result in algebraic topology which says that arbitrary maps between CW complexes
and their homotopies may be approximated by maps and homotopies which respect the cellular
structure [12, chap. 10]. We give a constructive proof of the theorem which relies heavily on the
(provable) principle of finite choice1, and we discuss the extent to which the theorem can be
strengthened while remaining constructive. The work we present here is intended to serve as a
foundation for a larger project on the development of cellular homology with Anders Mörtberg.

In order to define CW complexes, we will need the following definition:

Definition 1 (CW skeleta). An ordered CW skeleton is an infinite sequence of types

∅ = C−1
ι−1−−→ C0

ι0−→ C1
ι1−→ . . .

equipped with maps α : Sn × An → Cn where An is equivalent to Fin(kn) for some kn : N and
the following square is a pushout:

Sn ×An An

Cn Cn+1

αn

ιn

y

An unordered CW skeleton is defined similarly, but each An is only assumed to be merely
finite, i.e. for all n we have a proof of ‖An ' Fin(kn)‖−1.

The pushout condition ensures that the (n+ 1)-skeleton Cn+1 is obtained by attaching a
finite number of n-dimensional cells to the n-skeleton Cn. In the case of an ordered CW skeleton,
each type of cells is equipped with an order inherited from Fin(kn), hence the name. Given a
CW skeleton C•, we write C∞ for the colimit of the sequence of n-skeleta, and for any n we
write ι∞ : Cn → C∞ for the inclusion of Cn into the colimit C∞.

Definition 2 (CW complexes). A type X is said to be an ordered (resp. unordered) CW
complex if there merely exists an ordered (resp. unordered) CW skeleton C• such that X is
equivalent to the colimit C∞.

1The proof has been fully formalised in Cubical Agda, and is available at https://github.com/loic-p/
cellular/blob/main/summary.agda

https://github.com/loic-p/cellular/blob/main/summary.agda
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A map between two CW complexes X and Y is simply a map between the underlying types.
The cellular approximation theorem states that such maps may be approximated by cellular
maps, i.e. sequences of maps between the n-skeleta of X and Y . In order to prove this theorem
constructively for unordered CW complexes, we need to define finite cellular maps:

Definition 3 (Cellular m-maps). Given two CW skeleta C• and D•, a cellular m-map from C•
to D• is a finite sequence of maps (fn : Cn → Dn)n≤m equipped with a family of homotopies
hn(x) : (ιn ◦ fn)(x) = (fn+1 ◦ ιn)(x) for n < m.

Definition 4 (Cellular m-homotopies). Given two cellular m-maps f•, g• : C• → D•, an
m-homotopy between f• and g•, denoted f• ∼m g•, is a finite sequence of homotopies
(hn : ιn ◦ fn = ιn ◦ gn)n≤m such that for n < m and x : Cn the following square commutes:

(ιn+1 ◦ fn+1 ◦ ιn) x (ιn+1 ◦ gn+1 ◦ ιn) x

(ιn+1 ◦ ιn ◦ fn) x (ιn+1 ◦ ιn ◦ gn) x

(hn+1◦ιn)(x)

(ιn+1◦hn)(x)

Theorem 1 (Cellular m-approximation theorem). Given two unordered CW skeleta C•, D•, a
map f : C∞ → D∞ and m : N, there merely exists an m-cellular map f• : C• → D• such that
ι∞ ◦ fm = f ◦ ι∞.

Theorem 2 (Cellular m-approximation theorem, part 2). Let C•, D• be unordered CW skeleta
and consider two cellular m-maps map f•, g• : C• → D• with a such that fm = gm. In this case,
there merely exists a cellular m-homotopy f• ∼m g•.

Sketch of proofs. The proof of Theorem 1 is done by induction on m: if we have an n-
approximation of f , we can use the principle of finite choice to obtain the mere existence
of an (n+ 1)-approximation. Note that we only approximate f up to a fixed dimension m, so
that the construction only needs finitely many calls to finite choice, which is constructively
valid [13, exercise 3.22]. Theorem 2 is proved using the exact same techniques.

Although our statements of the cellular approximation theorems are sufficient to develop
cellular homology in HoTT [11], they are weaker than their classical counterparts on two
points. Firstly, we only obtain the mere existence of an approximation. However, since every
construction in HoTT has to be homotopy invariant, the untruncated version of Theorem 1
is actually inconsistent: when specialised to the unit type and the circle (which are both CW
complexes), the untruncated approximation theorem amounts to the contractibility of the circle.
Therefore, some amount of truncation is required to state the theorem in HoTT. Secondly, the
classical cellular approximation theorems are stated for m = ∞, while ours only provide finite
approximations. In fact, due to the fundamental reliance of the theorem on finite choice, we
conjecture that the case m = ∞ is equivalent to the axiom of countable choice, and thus not
provable in constructive HoTT.

Conjecture 1. The case m = ∞ of the cellular approximation theorems is not provable in plain
HoTT for unordered CW skeleta.

However, in the case of ordered CW skeleta, we expect that it is possible to use the order on
the sets of cells to pick a minimal approximation at each stage for some carefully defined order.
This eschews the need for finite choice and thus we conjecture the following:

Conjecture 2. The cellular approximation theorems hold for m = ∞ for ordered CW skeleta.
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