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Types of equalities, equalities of types

In Homotopy Type Theory, an equality between two types is the same
thing as a homotopy equivalence.

This allows us to construct non-obvious equalities between types:

(𝐵𝑜𝑜𝑙 + 𝐵𝑜𝑜𝑙) ≃ (𝐵𝑜𝑜𝑙 × 𝐵𝑜𝑜𝑙) ≃ (𝐵𝑜𝑜𝑙 → 𝐵𝑜𝑜𝑙)

(Σ(𝑥 ∶ S1) . ‖𝑥 = 𝑏𝑎𝑠𝑒‖) ≃ 𝑈𝑛𝑖𝑡

But how can we prove that two types are not equal?
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Analysis Situs Abridged

This problem is the bread and butter of topologists. Their favourite
trick is to associate algebraic objects (groups, modules...) to spaces
and algebraic morphisms to morphisms between spaces.

→ equivalent spaces are given isomorphic algebraic invariants

→ the difficult problem of telling spaces apart is reduced to the
(hopefully) easier problem of telling algebraic gadgets apart
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Stop doing topological spaces

General topological spaces are extremely complicated and it is
difficult to apply these algebraic methods to them.

???? ??????? ?????????

Good news: there is a very comprehensive category of topological
spaces where algebraic invariants are very effective: CW complexes
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CW complexes, type-theoretically

Following Buchholtz and Favonia '18, we construct them iteratively:

𝑋−1 𝑋0 𝑋1 𝑋2 ...

▶ 𝑋−1 is defined to be empty

▶ 𝑋0 is the type of points

▶ 𝑋1 is obtained by gluing edges on 𝑋0
▶ 𝑋2 is obtained by gluing discs on 𝑋1

••

•

• •
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CW complexes, type-theoretically
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▶ 𝑋0 is the type of points
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𝐴2 × S1 𝐴2

𝑋1 𝑋2

𝑓𝑠𝑡

⌜

••

•

• •
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Spooky scary CW skeletons

Thus, we define a CW skeleton to be given by the following data:

▶ a family of types 𝑋 indexed by N ∪ {−1}
▶ a number of cells for every dimension, given by 𝑓 ∶ N → N

▶ an attaching map for every dimension

𝛼𝑛 ∶ 𝐹𝑖𝑛 (𝑓 𝑛) → S𝑛 → 𝑋𝑛−1

Such that 𝑋−1 is empty and that for all 𝑛, this diagram is a pushout:

𝐹𝑖𝑛 (𝑓 𝑛) × S𝑛 𝐹𝑖𝑛 (𝑓 𝑛)

𝑋𝑛−1 𝑋𝑛

𝛼𝑛

⌜
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Spooky scary CW skeletons

Then, we define a morphism of CW skeleta as a family of maps

𝑋−1 𝑋0 𝑋1 𝑋2 ...

𝑌−1 𝑌0 𝑌1 𝑌2 ...

𝑓−1 𝑓0 𝑓1 𝑓2

such that every square commutes up to homotopy.

This induces a map between the colimits

𝑓∞ ∶ 𝑋∞ → 𝑌∞
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CW complexes

Finally, we define a type to be a CW complex if it is merely
equivalent to the colimit of a CW skeleton.

𝐶𝑊 ∶= (𝑋 ∶ 𝑇𝑦𝑝𝑒) × ‖(𝐶 ∶ 𝐶𝑊_𝑠𝑘𝑒𝑙) × (𝐶∞ ≃ 𝑋)‖

Now, how should we define maps between two CW complexes?
Maybe a map that is the colimit of some map of CW skeleta?
We can do simpler!
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The Cellular Approximation Theorem

Cellular approximation theorem : let 𝑋 and 𝑌 be two CW skeleta.
Every map from 𝑋∞ to 𝑌∞ is the colimit of a map of CW skeleta.

⟶

Likewise, any homotopy can be approximated by a homotopy that
respects the cellular structure
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Is this even allowed?

All classical proofs of this theorem are very choice-y.
After all, consider the following

•

•

• •

Which end of the segment do we approximate it with?

And since there is an infinite number of dimensions, there is an
infinite number of dependent choices to make. ☹ 
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Laziness to the rescue

Our main goal with this theorem is to define a functorial theory of
cellular homology.

To any CW complex 𝑋, we want to associate a family of abelian
groups 𝐻𝑛(𝑋) that measure the "number of n-dimensional holes".

It turns out that for any given 𝑛, the definition of 𝐻𝑛(𝑋) only
depends on the (𝑛 + 1)-skeleton of 𝑋. And we only need finite choice
to prove the cellular approximation theorem up to dimension 𝑛 + 1!
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Laziness to the rescue

Plan: given an integer 𝑛,

▶ Define the cellular homology group 𝐻𝑛(_) on the category of
(𝑛 + 1)-skeleta

▶ Prove the cellular approximation theorem for this category

▶ Use it to show that 𝐻𝑛(𝑋) only depends on 𝑋∞
▶ Lift the definition to the category of CW complexes

▶ (WIP) Prove the Eilenberg-Steenrod axioms, the Hurewicz
theorem...
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Pour l'honneur de l'esprit humain

Okay, so we do not need the full approximation theorem in the end.
Can we still do it, though?

It does forces us to do a lot of choices, but remember that our types
of 𝑛-cells are of the form 𝐹𝑖𝑛 𝑘. They are not arbitrary finite sets,
they are ordered finite sets!

Thus, in dimension 0, we can easily approximate a point by the
smallest element of the 0-skeleton in its connected component.

In dimension 1, it gets more difficult: even with a finite number of
1-cells, we can have an infinite number of cellular maps (remember
that 𝜋1(S1) ≃ Z)
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Pour l'honneur de l'esprit humain

Conjecture: for our definition of CW skeleta with ordered sets of
cells, we can prove the full version of the cellular approximation
theorem

But

Theorem: if we modify the definition of CW skeleta so that the sets
of cells are unordered, then the full cellular approximation theorem
implies a weak form of choice.
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Thank you!


