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Setoid models of type theory were designed by Hofmann [5] in order to add function ex-
tensionality, proposition extensionality, and quotient types to intensional type theory. Unfor-
tunately, Hofmann’s first setoid model does not support true type dependency, and his second
setoid model does not support all the computation rules of type theory. Altenkirch [1] improved
the definition of setoids by putting the setoid equalities in a sort of strict propositions (SProp),
which allowed him to support dependent types. A few years later down the line, Altenkirch,
Boulier, Kaposi, Sattler and Sestini constructed a universe of setoids for Altenkirch’s model [2].
They give three different definitions of their universe: one which needs induction-recursion, one
which needs induction-induction, and finally one which only requires an identity type with a
strengthened J rule.

In this abstract, we propose a new construction for the setoid universe which only needs
indexed inductive families. Furthermore, we note that our construction still works (more or
less) when the equality of the setoids is taken to be in Prop or Type instead of SProp, resulting
in models that can be equipped with choice principles. Our construction is fully formalised in
Rocq, and is available at https://github.com/loic-p/setoid-universe.

1 The Universe of Setoids
The most natural construction for the setoid universe is via induction-recursion: one defines
a type of codes U0 along with three recursive functions eqU0, El0 and eq0 that respectively
represent the setoid equality between the codes, the universal family of small setoids and its
(heterogeneous) equality:

U0 : Type1 El0 : U0 → Type0
eqU0 : U0 → U0 → Sort1 eq0 : ∀ (A B : U0), El0 A → El0 B → Sort0

Note that we use an indeterminate sort Sorti for the equality relations of our setoids, so that
we may later instantiate it with either SProp, Prop or Typei. Anyway, we do not wish to use
induction-recursion, so we must find a way to eliminate it from the construction. The canonical
method is Hancock et al.’s small induction-recursion [4], but it does not apply in this case: not
only do the recursive functions eqU0 and eq0 have two arguments of type U0 instead of one, but
the return type of eqU0 is not even small (at least in the case where Sorti = Typei).

Instead, we start by defining an overapproximation preU0 for our setoid universe, with a
constructor for dependent products that is parametrised by arbitrary equality relations on A
and P and does not enforce P to be a setoid morphism (Fig. 1). This way, the definition of
preU0 is not mutual with the definition of eq0 and eqU0 anymore, and it fits in the framework
of small induction-recursion. Then, as a second step, we define the equality relations eq0 and
eqU0 on the overapproximated universe, using the same definitions as in the usual inductive-
recursive version. Next, we define an inductive predicate extU0 that carves out the codes
from preU0 which have a counterpart in the inductive-recursive definition. More specifically,
it ensures that that the dependent codomains that appear in preΠ and preΣ are proper setoid
morphisms from the domains into the universe, and that the codes for dependent products have
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Inductive preU0 : Type1 :=
| preN : preU0
| preΣ : ∀ (A : preU0) (P : El0 A → preU0), preU0
| preΠ : ∀ (A : preU0) (Aeq : El0 A → El0 A → Sort0)

(P : El0 A → preU0) (Peq : ∀ a0 a1, El0 (P a0) → El0 (P a1) → Sort0), preU0.

Fixpoint El0 (A : preU0) : Type0 :=
match A with
| preN ⇒ N
| preΣ A P ⇒ Σ (a : El0 A), El0 (P a)
| preΠ A Aeq P Peq ⇒ Σ (f : ∀ (a : El0 A), El0 (P a)), (∀ a a’, Aeq a a’ → Peq (f a) (f a’))
end.

Figure 1: Small inductive-recursive definition of an overapproximated universe.

been parametrised with the equality relations defined by eq0. Finally, we can put everything
together: the carrier type of our universal setoid is defined as U0 := Σ (A : preU0). extU0 A, its
setoid equality is given by eqU0 on the first component, the universal dependent family on the
universe is provided by El0, and the heterogeneous equality on that family is given by eq0. This
roundabout encoding is actually faithful to the original inductive-recursive definition, as we can
derive the same induction principle with its computation rules, and the three functions El0,
eqU0 and eq0 compute on type formers.

In order to complete the definition of our universal setoid, we can show by induction that
the equality relation eqU0 is an equivalence relation on U0, and that the relation eq0 is a hetero-
geneous equality equipped with a coercion operator:

cast : ∀ (A B : U0) (e : eqU0 A B) (a : El0 A), El0 B
casteq : ∀ (A B : U0) (e : eqU0 A B) (a : El0 A), eq0 A B a (cast A B e a)

The accompanying Rocq development also includes W types, a subuniverse of propositions, an
equality type, two universe levels, quotient types, and an accessibility predicate with its large
elimination principle.

2 Choice principles
SProp setoids Instantiating the construction with SProp results in a universe that fits nicely
in Altenkirch’s setoid model, and does not need anything fancy from our metatheory. This
provides a shallow embedding of MLTT + extensionality + quotients into MLTT + SProp, which
preserves all the computation rules of MLTT. Note that even though the computation rule of
the J eliminator for eq0 is only propositional, one can nevertheless define an inductive equality
in U0 which is equivalent to eq0 and for which J does compute on reflexivity [8].

Type setoids The situation is even more interesting if we try to instantiate the construction
with Type. In that case, we can additionally interpret the following principle in our model,
which says that any relation that is propositionally a functional relation determines a function
(this principle is sometimes called unique choice):

∀ (a : A), ∥Σ (b : B), (R a b) × (∀ c, R a c → c = b) ∥
→ Σ (f : A → B), ∀ (a : A), R a (f a).
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And there’s more: since the equality relation on the setoid of natural numbers coincides with
the meta-theoretic equality on its underlying set, a function from N to any other setoid is
automatically a setoid morphism. As a consequence, one can interpret countable choice and
even dependent choice in this new model.

ACN : (∀ (n : N), ∥ P n ∥) → ∥ ∀ (n : N), P n ∥
DC : (∀ (a : X), ∥Σ (b : X), R a b ∥) → ∥Σ (s : N → X), ∀ n, R n (n+1) ∥

Unfortunately, there is a price to pay: if we try to do a setoid model without definitional proof
irrelevance, the computation rules for substitution under binders do not hold definitionally. In
particular, this means that our construction can no longer be viewed as a shallow embedding
from an extension of MLTT to MLTT, since some definitional equalities are only interpreted as
setoid equalities. This phenomenon has already been pointed out in a note of Coquand [3], in
which he presents proof-relevant setoids as a model for an early version of MLTT which had
weaker computation rules [6, 7].

Prop setoids If we instantiate our construction with Prop instead, we can have a sort of
impredicative propositions without destroying the computational content of propositions. In
particular, it allows us to have large elimination for the Prop-valued accessibility predicate. As
a consequence, we can derive a version of unique choice which is restricted to decidable relations
R : A → N → Prop. The resulting theory is extensional but keeps the proof-theoretic strength
of CIC, which is much higher than the strength of MLTT+SProp. However, neither the full
principle of unique choice nor countable choice are provable in this model, and the computation
rules for binders are not definitional either.
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