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The Setoid Model
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Fr=t:A ~ [+t : [A]
FrEtz=u:A  ~  [I]Ft] =u] : [A]

They validate
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Hofmann's PhD thesis: twa translations from CC to CC

FEt:A  ~  [[]F[t] : [A]
Fret=u:A ~  [[]Ft] =[u] : [A]

They validate
» function extensionality
> proposition extensionality
> quotient types
BUT:
» First model: no true dependent types
» Second model: missing definitional equations
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+ Universe of non-dependent types



An Inductive-Recursive Universe

Inductive U :=

N :U

Nn:A:U)(P:ELA> U)(P,:a p~q a0 - Pa~,Pa)—-U
ELN = IN
EL(NAPP,) = (f : (a: ELA) - EL(P a))

x(fe:a p~p @' = fa pgpy fa)

NNuN ET
= ™ = = |
ny~y M (* inductive def of equality *)

(fifed narp,~neaq, (9:9¢) = @ p~g b= fa pg~qp gb
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|s that actually a definition?

Agda accepts it  "\_(V)_/~
...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

» encoding as an inductive-inductive family

» encoding as an inductive family in a theory with a
SProp-valued equality with large elimination



An Inductive Universe



Let's just hack our way through it
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Let's just hack our way through it

Inductive U :=
N :U
n:(A:U)(A.: A— A — SProp)
(P:ELA—> U)(P.:Pa—- Pa — SProp) » U

El: U - Type
ELN = IN
EL(MAA_PP.) = (f : (a: ELA) - EL(Pa))

x(fe:A.aa = P.(fa)(fa))

(* Definition of equalities without using A_ or P_ *)
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Let's just hack our way through it

Inductive U, : U — Type :=
N, : U, N
N : (A:U) (A, : U, A)
(P:ELA-> U)(P,:(a:A)— U, (Pa))
(Pext 2@ p~p @ > Pa ~, Pa’)
> U, (MA(- p~a D)P(Aaa . — popg =)

U =(A: U)x (U, A)
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Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

» A type coercion operator,

» 3-types, W-types, |d-types,

> quotient types,

» a universe of propositions with Propext,
> universe embeddings.

Syntactic translation of MLTT +funext+propext+UIP+quotients
into MLTT + SProp Which preserves conversion.
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Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds
— difference between ¥ and 3

(x:A) > 3(y:B).Rab - ZI(f:A-B).(x:A)—> Rxf(x)

(x:A)->3(y:B).Rab A(f : A—> B).(x : A) > R x f(x)
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SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, L, 1d, Acc) % K Yo v

Impredicative Set
Impredicative, proof-relevant, weird, large elim anly allowed for
small inductives 8 AN

Type
Predicative hierarchy, proof-relevant, large elim allowed * % % x %

1
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Varieties of setoids

SProp setoids
Once you truncate something, it's lost for good — no choice at all

Prop setoids
Large elimination of accessibility — z?-choice
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Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:

Function comprehension / Unique choice
Functional relations are the same thing as functions

Countable and dependent chaice
Since the setoid equality on IN coincides with the meta-equality,
every function out of IN is automatically a setoid morphism.
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Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:

Chaice for higher arder types
For the setoid equality on N — IN to coincide with the
meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that ©
Type-valued setoids inside the SPraop-valued setoid model have
chaice for all Martin-Lof types

(cf. Rathjen, Chaice principles in constructive and classical set thearies)
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What about Impredicative Set?

idk, Impredicative-Set-valued setoids seem to sit somewhere
inbetween Prap-valued and Type-valued setoids
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Universes for proof-relevant setoids

Take the universe construction from earlier, and substitute SProp for
your favaurite universe. It just warks!
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A syntactic model?

Can we get the ultimate setoid translation out of this?

FrEt:A  ~ [+t : [A]
Frtzu:A ~ [t =[u] : [A]
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A syntactic model?

Can we get the ultimate setoid translation out of this?
Fr=t:A  ~ [+t : [A]
[Ftzu:A ~ [[]F [t =[u] : [A]
Unfortunately, no ®
Substitution don't go under binders: (Ax.t)[o0] - Ax.t[0]

Barras, Coquand, Huber, "A Generalization of Takeuti-Gandy
Interpretation"
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» Can we derive a systematic encoding of double
induction-recursion from this hack?

» Can we find a nice-ish syntax for the "proof-relevant
observational type theory" of this weak madel?
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