" 13 june 2025

0'|'c uje |

The Setoid Model

Hofmann's PhD thesis: twa translations from CC to CC

Fr=t:A ~ [+t : [A]
FrEtz=u:A ~ [I]Ft] =u] : [A]

They validate
» function extensionality
> proposition extensionality
> quotient types

The Setoid Model

Hofmann's PhD thesis: twa translations from CC to CC

FEt:A ~ [[]F[t] : [A]
Fret=u:A ~ [[]Ft] =[u] : [A]

They validate
» function extensionality
> proposition extensionality
> quotient types
BUT:
» First model: no true dependent types
» Second model: missing definitional equations

The Setoid Model, again

Altenkirch '99 adds definitional proof irrelevance

Setoid :={

A : Type
—~p—:+A—A - SProp
refl. @ x~yx

Sym X~y oY~ X
trans ' X~ Y 2 Y~ Z > X~y Z

}

— true dependent types

The Setoid Model, again

Altenkirch '99 adds definitional proof irrelevance

Setoid :={
A : Type
—~p—:+A—A - SProp
refl. @ x~yx

Sym X~y oY~ X
trans ' X~ Y 2 Y~ Z > X~y Z

}

— true dependent types

+ Universe of non-dependent types

An Inductive-Recursive Universe

Inductive U :=

N :U

Nn:A:U)(P:ELA> U)(P,:a p~q a0 - Pa~,Pa)—-U
ELN = IN
EL(NAPP,) = (f : (a: ELA) - EL(P a))

x(fe:a p~p @' = fa pgpy fa)

NNuN ET
= ™ = = |
ny~y M (* inductive def of equality *)

(fifed narp,~neaq, (9:9¢) = @ p~g b= fa pg~qp gb
L

X ~
-~y 4

|s that actually a definition?

|s that actually a definition?

Agda accepts it "_(V)_/"

|s that actually a definition?

Agda accepts it "_(V)_/"
...actually, this is double ind-rec. No general theory for those AFAIK

|s that actually a definition?

Agda accepts it "_(V)_/"
...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Baulier, Kapasi, Sattler and Sestini '21: we can do better

|s that actually a definition?

Agda accepts it "_(V)_/"
...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Baulier, Kapasi, Sattler and Sestini '21: we can do better

» encoding as an inductive-inductive family

|s that actually a definition?

Agda accepts it "_(V)_/~
...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

» encoding as an inductive-inductive family

» encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

An Inductive Universe

Let's just hack our way through it

Inductive U :=
N :U
n:(A:U)
(P:ELA - U)
(Pp:apvpa -Pa~,Pa)-U

El: U - Type
ELN = IN
EL(NAPP,) = (f : (a: ELA) - EL(Pa))

x(fe:Q@ g~y @ > fa pgpy fa')

(* Definition of equalities *)

Let's just hack our way through it

Inductive U :=
N :U
n:(A:U)
(P:ELA> U)> U

El: U - Type
ELN = N
EL(MAP) = (f : (a: ELA) - EL(Pa))

x(fe:Q@ p~p @ > fa pgope fQ)

(* Definition of equalities *)

Let's just hack our way through it

Inductive U :=
N :U
n:(A:U)(A.:A—- A — SProp)
(P:ELA—> U)(P.:Pa—- Pa - SProp) » U

El: U - Type
ELN = IN
EL(MAA_PP.) = (f : (a: ELA) - EL(Pa))

x(fe:A.aa = P.(fa)(fa))

(* Definition of equalities *)

Let's just hack our way through it

Inductive U :=
N :U
n:(A:U)(A.: A— A — SProp)
(P:ELA—> U)(P.:Pa—- Pa — SProp) » U

El: U - Type
ELN = IN
EL(MAA_PP.) = (f : (a: ELA) - EL(Pa))

x(fe:A.aa = P.(fa)(fa))

(* Definition of equalities *)

\ small IR

Let's just hack our way through it

Inductive U :=
N :U
n:(A:U)(A.: A— A — SProp)
(P:ELA—> U)(P.:Pa—- Pa — SProp) » U

El: U - Type
ELN = IN
EL(MAA_PP.) = (f : (a: ELA) - EL(Pa))

x(fe:A.aa = P.(fa)(fa))

(* Definition of equalities without using A_ or P_ *)

Let's just hack our way through it

Inductive U, : U — Type :=
N, : U, N
N : (A:U) (A, : U, A)
(P:ELA-> U)(P,:(a:A)— U, (Pa))
(Pext 2@ p~p @ > Pa ~, Pa’)
> U, (MA(- p~a D)P(Aaa . — popg =)

Let's just hack our way through it

Inductive U, : U — Type :=
N, : U, N
N : (A:U) (A, : U, A)
(P:ELA-> U)(P,:(a:A)— U, (Pa))
(Pext 2@ p~p @ > Pa ~, Pa’)
> U, (MA(- p~a D)P(Aaa . — popg =)

U =(A: U)x (U, A)

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

» A type coercion operator,

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

» A type coercion aperator,
» 3-types, W-types, |d-types,

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with
» A type coercion operator,

» 3-types, W-types, |d-types,
> quotient types,

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

» A type coercion operator,

» 3-types, W-types, |d-types,

> quotient types,

» a universe of propositions with Propext,

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

» A type coercion operator,

» 3-types, W-types, |d-types,

> quotient types,

» a universe of propositions with Propext,
> universe embeddings.

Well, that was easy

Surprisingly enaugh, it works.
We can get an inductive-recursive universe hierarchy with

» A type coercion operator,

» 3-types, W-types, |d-types,

> quotient types,

» a universe of propositions with Propext,
> universe embeddings.

Syntactic translation of MLTT +funext+propext+UIP+quotients
into MLTT + SProp Which preserves conversion.

Proof-relevant setoids

Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds
— difference between ¥ and 3

10

Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds
— difference between ¥ and 3

(x:A) > 3(y:B).Rab - ZI(f:A-B).(x:A)—> Rxf(x)

(x:A)->3(y:B).Rab A(f : A—> B).(x : A) > R x f(x)

10

Review of universes

1

Review of universes

SPrap
Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L

1

Review of universes

SPrap
Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e

1

Review of universes

SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, 1, Id, Acc)

1

Review of universes

SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, L, 1d, Acc) % K Yo v

1

Review of universes

SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, L, 1d, Acc) % K Yo v

Impredicative Set
Impredicative, proof-relevant, weird, large elim anly allowed for
small inductives

1

Review of universes

SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, L, 1d, Acc) % K Yo v

Impredicative Set
Impredicative, proof-relevant, weird, large elim anly allowed for
small inductives 8 AN

1

Review of universes

SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, L, 1d, Acc) % K Yo v

Impredicative Set
Impredicative, proof-relevant, weird, large elim anly allowed for
small inductives 8 AN

Type
Predicative hierarchy, proof-relevant, large elim allowed

1

Review of universes

SPrap

Impredicative, definitionally proof-irrelevant, large elim anly
allowed for L % %k e e
Prop

Impredicative, marally proof-irrelevant, large elim only allowed for
subsingletons (in particular, L, 1d, Acc) % K Yo v

Impredicative Set
Impredicative, proof-relevant, weird, large elim anly allowed for
small inductives 8 AN

Type
Predicative hierarchy, proof-relevant, large elim allowed * % % x %

1

Varieties of setoids

12

Varieties of setoids

SProp setoids
Once you truncate something, it's lost for good — no choice at all

12

Varieties of setoids

SProp setoids
Once you truncate something, it's lost for good — no choice at all

Prop setoids
Large elimination of accessibility — z?-choice

12

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include same cool choice principles:

13

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:

Function comprehension / Unique choice
Functional relations are the same thing as functions

13

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:

Function comprehension / Unique choice
Functional relations are the same thing as functions

Countable and dependent chaice
Since the setoid equality on IN coincides with the meta-equality,
every function out of IN is automatically a setoid morphism.

13

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:
Chaice for higher arder types

For the setoid equality on N — IN to coincide with the
meta-equality, we need function extensionality in the meta...

14

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:

Chaice for higher arder types

For the setoid equality on N — IN to coincide with the
meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that ©
Type-valued setoids inside the SProp-valued setoid model have
chaice for all Martin-Lof types

14

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool chaice principles:

Chaice for higher arder types
For the setoid equality on N — IN to coincide with the
meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that ©
Type-valued setoids inside the SPraop-valued setoid model have
chaice for all Martin-Lof types

(cf. Rathjen, Chaice principles in constructive and classical set thearies)

14

What about Impredicative Set?

idk, Impredicative-Set-valued setoids seem to sit somewhere
inbetween Prap-valued and Type-valued setoids

15

Universes for proof-relevant setoids

Take the universe construction from earlier, and substitute SProp for
your favaurite universe. It just warks!

16

A syntactic model?

Can we get the ultimate setoid translation out of this?

FrEt:A ~ [+t : [A]
Frtzu:A ~ [t =[u] : [A]

17

A syntactic model?

Can we get the ultimate setoid translation out of this?
FrEt:A ~ [+t : [A]
[Ftzu:A ~ [[]F [t =[u] : [A]

Unfortunately, no ®

17

A syntactic model?

Can we get the ultimate setoid translation out of this?
Fr=t:A ~ [+t : [A]
[Ftzu:A ~ [[]F [t =[u] : [A]
Unfortunately, no ®
Substitution don't go under binders: (Ax.t)[o0] - Ax.t[0]

Barras, Coquand, Huber, "A Generalization of Takeuti-Gandy
Interpretation"

17

» Can we derive a systematic encoding of double
induction-recursion from this hack?

» Can we find a nice-ish syntax for the "proof-relevant
observational type theory" of this weak madel?

18

