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1. Observational Type Theory



A Type Theory for Set Truncated
Mathematics

What should we have in a type theory for classical set-truncated math?

According to the Lean proof assistant,

▶ A sort of proposition SProp with
▶ definitional proof-irrelevance

𝑃 ∶ 𝑆𝑃𝑟𝑜𝑝 𝑎 ∶ 𝑃 𝑏 ∶ 𝑃
𝑎 ≡ 𝑏 ∶ 𝑃
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A Type Theory for Set Truncated
Mathematics

What should we have in a type theory for classical set-truncated math?

According to the Lean proof assistant,

▶ A sort of proposition SProp with
▶ definitional proof-irrelevance
▶ impredicativity
▶ large elimination of sub-singletons inductive types

▶ Quotient types

▶ Function extensionality & Proposition extensionality

▶ Excluded middle & Choice (Hilbert's 𝜖 operator)



Mathematics vs Type Theory

Unfortunately, these combined features break some important properties of

type theory:

Large elimination of Accessibility + definitional proof irrelevance makes

type-checking undecidable and breaks subject reduction.

The computation rule for Lean's quotients in SProp + definitional proof

irrelevance makes type-checking undecidable and breaks subject reduction.

The computation rule for Lean's J + computation in impredicative types

makes type-checking undecidable. [Abel and Coquand 2019]



Observational Type Theory

Observational Type Theory [Altenkirch, McBride, Swierstra 2007] is an internal

language for types equipped with a proof-irrelevant equality relation

(proof-irrelevant setoids).

The central notion in OTT is the observational equality

𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ 𝐵 ∶ 𝑇𝑦𝑝𝑒ℓ 𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
𝑎 𝐴∼𝐵 𝑏 ∶ 𝑆𝑃𝑟𝑜𝑝

This heterogeneous, proof-irrelevant relation replaces the usual Martin-Löf

identity type.
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Observational Type Theory

The observational equality is defined on a type-per-type basis:

▶ an equality between two pairs is a pair of equalities

𝑡 𝐴×𝐵∼𝐶×𝐷 𝑢 ≡ (𝑓𝑠𝑡 𝑡 𝐴∼𝐶 𝑓𝑠𝑡 𝑢) ∧ (𝑠𝑛𝑑 𝑡 𝐵∼𝐷 𝑠𝑛𝑑 𝑢)

▶ an equality between two functions is a family of pointwise equality

𝑓 Π𝐴𝐵∼Π𝐶𝐷 𝑔 ≡ Π(𝑥 ∶ 𝐴)(𝑦 ∶ 𝐶) . 𝑥 𝐴∼𝐶 𝑦 → 𝑓 𝑥 𝐵[𝑥]∼𝐷[𝑦] 𝑔 𝑦

▶ an equality across two incompatible types is false

𝑡 Π𝐴𝐵∼N 𝑢 ≡ ⊥
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Observational Type Theory

Most of the properties of equality are postulated as proof irrelevant axioms.

▶ reflexivity

▶ symmetry

▶ transitivity

▶ function congruence

▶ etc...



Observational Type Theory

To eliminate the observational equality, OTT provides a typecasting operator

𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ 𝐵 ∶ 𝑇𝑦𝑝𝑒ℓ 𝑒 ∶ 𝐴 ∼ 𝐵 𝑡 ∶ 𝐴
𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒, 𝑡) ∶ 𝐵

The cast operator computes by case analysis on A and B.

▶ casting between two product types is a component-wise cast

𝑐𝑎𝑠𝑡(𝐴 × 𝐵, 𝐶 × 𝐷, 𝑒, 𝑡) ≡ ⟨𝑐𝑎𝑠𝑡(𝐴, 𝐶, 𝑒1, 𝑓𝑠𝑡 𝑡); 𝑐𝑎𝑠𝑡(𝐵, 𝐷, 𝑒2, 𝑠𝑛𝑑 𝑡)⟩

▶ casting between two function types is a back-and-forth cast
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We can define the usual J eliminator from cast and proof irrelevance.
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Observational Type Theory

From these primitives, one obtains a theory that supports

▶ function and proposition extensionality

▶ definitional UIP

▶ impredicativity of SProp

▶ quotient types and their computation rule

Plus, OTT is type-theoretically well-behaved!

▶ consistency

▶ normalization

▶ subject reduction

▶ decidable conversion and type-checking

[Pujet and Tabareau 2023]
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Coming soon to a proof assistant near
you!

𝑐𝑎𝑠𝑡(𝑙𝑖𝑠𝑡 𝐴, 𝑙𝑖𝑠𝑡 𝐵, 𝑒, [𝑎]) ≡ [𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒′, 𝑎)]
(Implementation largely based on the work of Gilbert, Leray, Tabareau, Winterhalter)



Coming soon to a proof assistant near
you!

𝑐𝑎𝑠𝑡(𝑙𝑖𝑠𝑡 𝐴, 𝑙𝑖𝑠𝑡 𝐵, 𝑒, [𝑎]) ≡ [𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒′, 𝑎)]
(Implementation largely based on the work of Gilbert, Leray, Tabareau, Winterhalter)



2. Principles of Choice



Quotients in OTT

The rule for the formation of quotients ask for a SProp-valued relation

𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ 𝑅 ∶ 𝐴 → 𝐴 → 𝑆𝑃𝑟𝑜𝑝
𝐴/𝑅 ∶ 𝑇𝑦𝑝𝑒ℓ

Thus, if you have a relation 𝑅 ∶ 𝐴 → 𝐴 → 𝑇𝑦𝑝𝑒, you need to quotient by

the truncated relation ‖𝑅‖, where truncation is defined as an inductive

type:
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Quotients in OTT

Now, if you prove 𝜋 𝑥 ∼ 𝜋 𝑦 in the quotient type 𝐴/‖𝑅‖, you can

obtain a proof of ‖𝑅 𝑥 𝑦‖, but unfortunately not a proof of 𝑅 𝑥 𝑦.

"Quotients are not effective" [Sterling, Angiuli and Gratzer 2019]

In other words: once you transform a type into a proposition, it is really

difficult to get back into the world of types.



Escaping truncation

Define a choice principle for A to be a function ‖𝐴‖ → 𝐴.

To connect this to the usual definition of choice, note that if you define

∃(𝑥 ∶ 𝐴) . 𝐵 ∶= ‖Σ(𝑥 ∶ 𝐴) . 𝐵‖

Then a choice principle allows you to realise the familiar statement

Π(𝑥 ∶ 𝐴)∃(𝑦 ∶ 𝐵) . 𝑅 𝑥 𝑦 → ∃(𝑓 ∶ 𝐴 → 𝐵)Π(𝑥 ∶ 𝐴) . 𝑅 𝑥 (𝑓 𝑥)

Unfortunately, choice principles are uncommon in OTT: they basically exist

for decidable types only
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Choice Principles

Compare the situation with other type theories:

In Lean, the full axiom of choice taken as a postulate, thus you get a choice

principle for all types.

Combined with extensionality principles, the full axiom of choice implies

excluded middle, and is thus highly non-constructive.



Choice Principles

Compare the situation with other type theories:

In HoTT/CubicalTT, the role of propositions is played by hProps, and

propositional truncation is defined as a HIT.

The eliminator of propositional truncation provides unique choice:

if all inhabitants of P are equal, then you have a choice principle for P.

This is a sweet spot for constructive mathematics:

▶ quotients by hProp-valued equivalence relations are effective

▶ functions are identified with functional graphs



Choice Principles

Compare the situation with other type theories:

In Coq, you can implement some weaker choice principles using large

elimination of the accessibility predicate.

In particular, you can show countable choice for decidable predicates: if 𝑃
is a decidable predicate on N, then

∃(𝑛 ∶ N) . 𝑃 𝑛 ⟶ Σ(𝑛 ∶ N) . 𝑃 𝑛

This is sufficient to define a lot of recursive functions by showing that their

call graph is well-founded. Combined with impredicativity, this is enough

to define an evaluator for System F.



Observational choice

Can we extend OTT with some choice principles?

We can not do much when propositions are proof-irrelevant: there is no

information to extract from a proof of truncation ‖𝐴‖, meaning that a

choice principle would have to invent an inhabitant of 𝐴 out of thin air.
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information to extract from a proof of truncation ‖𝐴‖, meaning that a

choice principle would have to invent an inhabitant of 𝐴 out of thin air.



Observational choice

What if we give up proof-irrelevance? Then we could imagine

𝑐ℎ𝑜𝑖𝑐𝑒 ∶ ‖𝐴‖ → 𝑖𝑠𝐻𝑃𝑟𝑜𝑝(𝐴) → 𝐴
𝑐ℎ𝑜𝑖𝑐𝑒 |𝑎| _ ≡ 𝑎

Problem 1: the proof of ‖𝐴‖ might contain axioms, so we would lose

canonicity

Problem 2: in an inconsistent context, we can use ‖𝑇𝑦𝑝𝑒‖ as a universe

which lives inside of Prop, which allows us to build non-terminating terms.
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So, what are our options?

Maybe we can build a version of OTT that is

▶ Proof-relevant (no definitional UIP)

▶ Axiom-free

▶ Careful with the interaction of choice and impredicativity

Losing definitional UIP is a bit disappointing! But that just might be the

price we have to pay in exchange for bits of choice.



3. Toward a Proof-Relevant OTT



Relevant Observations

The definition of a relevant observational equality does not change much.

𝐴 ∶ 𝑇𝑦𝑝𝑒ℓ 𝐵 ∶ 𝑇𝑦𝑝𝑒ℓ 𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
𝑎 𝐴∼𝐵𝑏 ∶ 𝑃𝑟𝑜𝑝

It lands in Prop (not SProp), and computes on type constructors:

▶ On Π-types, equality is defined pointwise

▶ On Σ-types, it is the (dependent) equality of both projections

▶ On Type, it is the equality of codes

▶ On Prop, it is the logical equivalence

▶ On incompatible type formers, it is False
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▶ On incompatible type formers, it is False



Groupoid Laws

However, we cannot get away with postulating groupoid laws as axioms

anymore, lest we get stuck terms in Prop.

We need:

▶ function congruence

𝑒 ∶ 𝑥 𝐴∼𝐴 𝑦 𝑓 ∶ Π 𝐴 𝐵
𝑐𝑜𝑛𝑔 𝑓 𝑒 ∶ (𝑓 𝑥) 𝐵[𝑥]∼𝐵[𝑦] (𝑓 𝑦)

But this is in fact equivalent to a proof of 𝑓 ∼ 𝑓
Thus function congruence is subsumed by reflexivity.
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Groupoid Laws

However, we cannot get away with postulating groupoid laws as axioms

anymore, lest we get stuck terms in Prop.

We need:

▶ function congruence

▶ transitivity

𝑒1 ∶ 𝑥 𝐴∼𝐴 𝑦 𝑒2 ∶ 𝑦 𝐴∼𝐴 𝑧
𝑒1 ⋅ 𝑒2 ∶ 𝑥 𝐴∼𝐴 𝑧

Transitivity can be obtained from congruence of 𝜆(𝑦 ∶ 𝐴).𝑥 𝐴∼𝐴 𝑦 and cast.
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However, we cannot get away with postulating groupoid laws as axioms

anymore, lest we get stuck terms in Prop.

We need:

▶ function congruence

▶ transitivity

▶ symmetry

𝑒 ∶ 𝑥 𝐴∼𝐴 𝑦

𝑒−1 ∶ 𝑦 𝐴∼𝐴 𝑥

Symmetry can be added with "backward cast", which is no more difficult

than cast
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Groupoid Laws

However, we cannot get away with postulating groupoid laws as axioms

anymore, lest we get stuck terms in Prop.

We need:

▶ function congruence

▶ transitivity

▶ symmetry

▶ reflexivity

In the end, reflexivity is the main obstacle (assuming we can do cast)

For this one, we are going to explore an idea from Higher Observational

Type Theory [Altenkirch et al 2023] (itself echoing ideas from Internal

Parametricity [Bernardy et al 2012])
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Reflexivity

The definition of the observational equality coincides with the binary

parametricity translation for an inductive-recursive universe.

Given a term in context t

Γ ⊢ 𝑡 ∶ 𝐶

The binary parametricity translation produces a new term

JΓK ⊢ [𝑡]𝜀 ∶ J𝐶K𝜀 [𝑡]0 [𝑡]1

Where JΓK duplicates all the variables of Γ:

J⋅K ∶= ⋅
JΓ, 𝑥 ∶ 𝐴K ∶= JΓK, 𝑥0 ∶ J𝐴K0, 𝑥1 ∶ J𝐴K1, 𝑥0 ∶ J𝐴K𝜀 𝑥0 𝑥1
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Reflexivity

The definition of the observational equality coincides with the binary

parametricity translation for an inductive-recursive universe.

We start with

J𝑃𝑟𝑜𝑝K𝜀 𝑡 𝑢 ∶= 𝑡 ↔ 𝑢

and we unroll the usual translation from there:

JΠ𝐴𝐵K𝜀 𝑓 𝑔 ∶= Π (𝑎0 ∶ J𝐴K0) (𝑎1 ∶ J𝐴K1) (𝑎𝜀 ∶ J𝐴K𝜀𝑎0𝑎1) .
J𝐵K𝜀 (𝑓 𝑎0) (𝑔 𝑎1)

JΣ𝐴𝐵K𝜀 𝑡 𝑢 ∶= Σ (𝑎𝜀 ∶ J𝐴K𝜀 (𝑓𝑠𝑡 𝑡) (𝑓𝑠𝑡 𝑢)) .
J𝐵K𝜀{𝑎0 ∶= 𝑓𝑠𝑡 𝑡 ; 𝑎1 ∶= 𝑓𝑠𝑡 𝑢} (𝑠𝑛𝑑 𝑡) (𝑠𝑛𝑑 𝑢)

Observe that J𝐴K𝜀 𝑡 𝑢 coincides with 𝑡 𝐴0∼𝐴1 𝑢
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Reflexivity

Of course, the parametricity translation also applies to terms.

JΓK ⊢ [𝑡]𝜀 ∶ J𝐶K𝜀 [𝑡]0 [𝑡]1

→ [𝑡]𝜀 plays the role of the (heterogeneous) reflexivity proof for 𝑡.

Of course, [𝑡]𝜀 is defined in the duplicated context JΓK. In order to get a

proper homogeneous reflexivity proof, we must substitute [𝑡]𝜀 with

reflexive terms.

𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

𝑥 ∶ 𝐴, 𝑥𝑒 ∶ 𝑥 𝐴∼𝐴 𝑥 ⊢ [𝑡]𝜀{𝑥0 ∶= 𝑥 ; 𝑥1 ∶= 𝑥 ; 𝑥𝜀 ∶= 𝑥𝑒} ∶ 𝑡 𝐵∼𝐵 𝑡

Thus, by packing terms with their reflexivity proofs, we can build a model

of type theory with a reflexive observational equality.
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Type Casting

Now that we have the groupoid laws, it remains to define the cast operator

We define it mutually with a casteq operator (since the computation rule

castrefl is not available anymore)

𝐴 ∶ 𝑇𝑦𝑝𝑒 𝐵 ∶ 𝑇𝑦𝑝𝑒 𝑒 ∶ 𝐴 ∼ 𝐵 𝑡 ∶ 𝐴
𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒, 𝑡) ∶ 𝐵

𝐴 ∶ 𝑇𝑦𝑝𝑒 𝐵 ∶ 𝑇𝑦𝑝𝑒 𝑒 ∶ 𝐴 ∼ 𝐵 𝑡 ∶ 𝐴
𝑐𝑎𝑠𝑡𝑒𝑞(𝐴, 𝐵, 𝑒, 𝑡) ∶ 𝑡 𝐴∼𝐵 𝑐𝑎𝑠𝑡(𝐴, 𝐵, 𝑒, 𝑡)

Their definition is by induction on the types, following McBride et al.



Axiom-free OTT

This is sufficient to define a version of OTT without axioms in the

propositional layer.

It comes at a price: definitional UIP and computation of cast on refl.

Now, it seems to me that there are two directions to extend this base with

choice principles.



Impredicativity + Acc elimination

It seems easy to add an accessibility predicate in Prop with large

elimination.

Is the resulting theory well-behaved? Mixing impredicativity with primitives

that compute by induction on the (predicative) universes is scary!

⟶ realisability-like semantics?
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But 𝑟𝑒𝑓𝑙 (𝑢𝑛𝑖𝑞𝑢𝑒 𝐴 𝐻𝐴 |𝑎|) should be convertible to 𝑟𝑒𝑓𝑙 𝑎!
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Thank you!


