
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Plan

▶ Short discussion of reducibility proofs
▶ A Coq formalisation of decidability of type-checking

Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, L.P.

▶ Continuity of MLTT functions
Martin Baillon, Assia Mahboubi, Pierre-Marie Pédrot

▶ Internal computability of MLTT functions
Martin Baillon, Yannick Forster, Assia Mahboubi, Kenji Maillard, Pierre-Marie Pédrot, L.P.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reducibility Proofs

Common meta-theoretical properties

▶ Subject Reduction
▶ Consistency
▶ Canonicity
▶ Normalisation
▶ Decidability of conversion
▶ Decidability of type-checking
▶ ...



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reducibility Proofs

We cannot prove normalisation by a straightforward induction on the
typing derivations:

Γ ⊢ t : Π (x : A) . B Γ ⊢ u : A
Γ ⊢ t u : B[u/x]

If we know that
▶ t normalises to λ x . t′

▶ u normalises to u′

we do not know how to get a normal form for t u ≡ t′[u′/x]

We need a stronger induction hypothesis.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reducibility Proofs

We cannot prove normalisation by a straightforward induction on the
typing derivations:

Γ ⊢ t : Π (x : A) . B Γ ⊢ u : A
Γ ⊢ t u : B[u/x]

If we know that
▶ t normalises to λ x . t′

▶ u normalises to u′

we do not know how to get a normal form for t u ≡ t′[u′/x]

We need a stronger induction hypothesis.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reducibility Proofs

Reducibility was designed by W. W. Tait to prove normalisation for Gödel′s
simply-typed system T.

The idea is to associate to every type A a predicate on terms JAK, such that

JA → BK t := ∀x, JAK x → JBK (t x)

Tait′s method was subsequently extended to System F by Girard, with the
introduction of reducibility candidates.
Nowadays, we have an extensive literature on reducibility proofs for all
kinds of systems.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reducibility Proofs

Reducibility was designed by W. W. Tait to prove normalisation for Gödel′s
simply-typed system T.

The idea is to associate to every type A a predicate on terms JAK, such that

JA → BK t := ∀x, JAK x → JBK (t x)
Tait′s method was subsequently extended to System F by Girard, with the
introduction of reducibility candidates.
Nowadays, we have an extensive literature on reducibility proofs for all
kinds of systems.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Taming Dependent Types

Handling dependent types, where computations occur inside of types too,
involves quite a lot of bookkeeping.

That being said, there are ways to make this bookkeeping more
manageable:

▶ conceptual frameworks that abstract away from the details of the
proof such as Sterling′s STC1 or Bocquet, Kaposi and Sattler′s relative
induction principles2

▶ or using a proof assistant to help you with verification and
automation.

1Sterling. First steps in synthetic Tait computability
2Bocquet, Kaposi, Sattler. Relative induction principles for type theories



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Taming Dependent Types

Handling dependent types, where computations occur inside of types too,
involves quite a lot of bookkeeping.

That being said, there are ways to make this bookkeeping more
manageable:
▶ conceptual frameworks that abstract away from the details of the

proof such as Sterling′s STC1 or Bocquet, Kaposi and Sattler′s relative
induction principles2

▶ or using a proof assistant to help you with verification and
automation.

1Sterling. First steps in synthetic Tait computability
2Bocquet, Kaposi, Sattler. Relative induction principles for type theories



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Taming Dependent Types

Handling dependent types, where computations occur inside of types too,
involves quite a lot of bookkeeping.

That being said, there are ways to make this bookkeeping more
manageable:
▶ conceptual frameworks that abstract away from the details of the

proof such as Sterling′s STC1 or Bocquet, Kaposi and Sattler′s relative
induction principles2

▶ or using a proof assistant to help you with verification and
automation.

1Sterling. First steps in synthetic Tait computability
2Bocquet, Kaposi, Sattler. Relative induction principles for type theories



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Type Theory in Type Theory

Abel, Öhman, Vezzosi. Decidability of Conversion for Type Theory in Type
Theory (2018).

The authors build a reducibility proof for MLTT with one universe in the
Agda proof assistant, without assuming any axiom.

They use their reducibility model to show that conversion is decidable, and
as by-products they obtain subject reduction, injectivity of Π′s,
consistency, and canonicity.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Type Theory in Type Theory: Overview
of the Proof

Abel, Öhman and Vezzosi build their reducibility model out of
proof-irrelevant predicates.

This means that they cannot define a universe of types equipped with a
reducibility structure. Instead, they define reducible types using
induction-recursion:

Γ ⊩ A :=
| ⊩N : (Γ ⊢ A ⇒∗ N) −→ Γ ⊩ A
| ⊩U : (Γ ⊢ A ⇒∗ U) −→ Γ ⊩ A
| ⊩Π : (Γ ⊢ A ⇒∗ ΠFG) → (Γ ⊩ F)

→ ((Γ ⊩ a : F) → Γ ⊩ G[a]) −→ Γ ⊩ A

with Γ ⊩ a : F defined by recursion over a proof of Γ ⊩ F.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Type Theory in Type Theory: Overview
of the Proof

Of course, this is a simplification.

Because all of the abstraction is unrolled, the definitions have plenty of side
conditions, they have to use PERs to simulate quotients, etc.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Type Theory in Type Theory: Overview
of the Proof

Of course, this is a simplification.

Because all of the abstraction is unrolled, the definitions have plenty of side
conditions, they have to use PERs to simulate quotients, etc.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Type Theory in Type Theory: Overview
of the Proof

Of course, this is a simplification.

Because all of the abstraction is unrolled, the definitions have plenty of side
conditions, they have to use PERs to simulate quotients, etc.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A Formalisation of Decidability of Type
Checking for MLTT in Coq

Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, L.P.

https://github.com/CoqHott/logrel-coq



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Goals

▶ More automation: autosubst, tactics
▶ More robustness: extending the proof should be as easy as possible
▶ Less assumptions: induction-recursion is not actually necessary for

this proof
▶ Finish the proof of decidability: show decidability of typing using a

bidirectional algorithm.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In Coq, we do not have induction-recursion, so we need to get rid of it.

The good news is that there is a particular kind of induction-recursion that
we can encode with ordinary inductive types: small induction-recursion 3.

Inductive A : Typei := elim : A → B
| c1 : A elim c1 = f1
| c2 : (x : A) → A elim (c2 x) = f2(elim x)

Inductive A : B → Typei :=
| c1 : A f1
| c2 : (b : B)(x : A b) → A (f2(b))

3Hancock, McBride, Ghani, Malatesta, Altenkirch. Small induction recursion



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In Coq, we do not have induction-recursion, so we need to get rid of it.

The good news is that there is a particular kind of induction-recursion that
we can encode with ordinary inductive types: small induction-recursion 3.

Inductive A : Typei := elim : A → B
| c1 : A elim c1 = f1
| c2 : (x : A) → A elim (c2 x) = f2(elim x)

Inductive A : B → Typei :=
| c1 : A f1
| c2 : (b : B)(x : A b) → A (f2(b))

3Hancock, McBride, Ghani, Malatesta, Altenkirch. Small induction recursion



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In Coq, we do not have induction-recursion, so we need to get rid of it.

The good news is that there is a particular kind of induction-recursion that
we can encode with ordinary inductive types: small induction-recursion 3.

Inductive A : Typei := elim : A → B
| c1 : A elim c1 = f1
| c2 : (x : A) → A elim (c2 x) = f2(elim x)

Inductive A : B → Typei :=
| c1 : A f1
| c2 : (b : B)(x : A b) → A (f2(b))

3Hancock, McBride, Ghani, Malatesta, Altenkirch. Small induction recursion



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion
The bad news is, the definition of Abel et al. is not small induction
recursion:
we are trying to define the reducibility of types, which is a Type0, in
parallel with the reducibility of terms, a Type0-valued predicate.

Fortunately, we can manage this with a layering strategy:
▶ Reducibility of small terms is a Type0-valued predicate
▶ Reducibility of small types is a Type1-valued predicate
▶ Reducibility of large terms is a Type1-valued predicate
▶ Reducibility of very large types is a Type2-valued predicate
▶ ...

We use the universe polymorphism of Coq to deal (more or less)
transparently with all these levels.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion
The bad news is, the definition of Abel et al. is not small induction
recursion:
we are trying to define the reducibility of types, which is a Type0, in
parallel with the reducibility of terms, a Type0-valued predicate.

Fortunately, we can manage this with a layering strategy:
▶ Reducibility of small terms is a Type0-valued predicate
▶ Reducibility of small types is a Type1-valued predicate
▶ Reducibility of large terms is a Type1-valued predicate
▶ Reducibility of very large types is a Type2-valued predicate
▶ ...

We use the universe polymorphism of Coq to deal (more or less)
transparently with all these levels.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion
The bad news is, the definition of Abel et al. is not small induction
recursion:
we are trying to define the reducibility of types, which is a Type0, in
parallel with the reducibility of terms, a Type0-valued predicate.

Fortunately, we can manage this with a layering strategy:
▶ Reducibility of small terms is a Type0-valued predicate
▶ Reducibility of small types is a Type1-valued predicate
▶ Reducibility of large terms is a Type1-valued predicate
▶ Reducibility of very large types is a Type2-valued predicate
▶ ...

We use the universe polymorphism of Coq to deal (more or less)
transparently with all these levels.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In the end, we get a reducibility model for MLTTn in MLTTn+4!

This is not only aesthetically pleasing, it is also very useful to prove
conservativity results:

For instance, we can extend this reducibility model to CCobs.
Thus, given any well-typed term f of type N → N in CCobs, we get a proof
in MLTT that f is reducible, or in other words

(n : Λ) →⊩ n : N →⊩ (f n) : N

From there, we can define an integer function f′ in MLTT that produces a
proof of ⊩ n : N and feeds it to the reducibility proof, from which it can
extract the value of (f n).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In the end, we get a reducibility model for MLTTn in MLTTn+4!

This is not only aesthetically pleasing, it is also very useful to prove
conservativity results:

For instance, we can extend this reducibility model to CCobs.
Thus, given any well-typed term f of type N → N in CCobs, we get a proof
in MLTT that f is reducible, or in other words

(n : Λ) →⊩ n : N →⊩ (f n) : N

From there, we can define an integer function f′ in MLTT that produces a
proof of ⊩ n : N and feeds it to the reducibility proof, from which it can
extract the value of (f n).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In the end, we get a reducibility model for MLTTn in MLTTn+4!

This is not only aesthetically pleasing, it is also very useful to prove
conservativity results:

For instance, we can extend this reducibility model to CCobs.
Thus, given any well-typed term f of type N → N in CCobs, we get a proof
in MLTT that f is reducible, or in other words

(n : Λ) →⊩ n : N →⊩ (f n) : N

From there, we can define an integer function f′ in MLTT that produces a
proof of ⊩ n : N and feeds it to the reducibility proof, from which it can
extract the value of (f n).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Getting Rid of Induction-Recursion

In the end, we get a reducibility model for MLTTn in MLTTn+4!

This is not only aesthetically pleasing, it is also very useful to prove
conservativity results:

For instance, we can extend this reducibility model to CCobs.
Thus, given any well-typed term f of type N → N in CCobs, we get a proof
in MLTT that f is reducible, or in other words

(n : Λ) →⊩ n : N →⊩ (f n) : N

From there, we can define an integer function f′ in MLTT that produces a
proof of ⊩ n : N and feeds it to the reducibility proof, from which it can
extract the value of (f n).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Interlude: Gödel′s incompleteness
theorem



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wait a second...

We showed that MLTTn+4 proves the consistency of MLTTn.
Thus, the full theory MLTT proves the consistency of MLTTn for all n.

But remark that any proof of False in MLTT can only mention a finite
number of universes.

Thus, a proof of False in MLTT must really be a proof of False in MLTTn for
some integer n -- but we proved that these cannot exist.
We just proved that MLTT is consistent inside of MLTT?!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wait a second...

We showed that MLTTn+4 proves the consistency of MLTTn.
Thus, the full theory MLTT proves the consistency of MLTTn for all n.

But remark that any proof of False in MLTT can only mention a finite
number of universes.

Thus, a proof of False in MLTT must really be a proof of False in MLTTn for
some integer n -- but we proved that these cannot exist.
We just proved that MLTT is consistent inside of MLTT?!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wait a second...

We showed that MLTTn+4 proves the consistency of MLTTn.
Thus, the full theory MLTT proves the consistency of MLTTn for all n.

But remark that any proof of False in MLTT can only mention a finite
number of universes.

Thus, a proof of False in MLTT must really be a proof of False in MLTTn for
some integer n -- but we proved that these cannot exist.
We just proved that MLTT is consistent inside of MLTT?!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wait, what?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Not so fast!
There is a catch:
▶ It is true that given an actual integer n = 3, 6, 23... we know how to

build a proof of consistency of MLTTn.
▶ However, we cannot do it from an abstract integer n. In other words,

we cannot prove Π(n : N) . consistent(MLTTn).

This is not too difficult to see:
We need n+4 universes to prove consistency of MLTTn. Thus, we would need
an infinite number of universes to prove Π(n : N) . consistent(MLTTn),
but a proof term can only contain finitely many universes.

This means we cannot do our proof of consistency of MLTT after all. All is
well!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Not so fast!
There is a catch:
▶ It is true that given an actual integer n = 3, 6, 23... we know how to

build a proof of consistency of MLTTn.
▶ However, we cannot do it from an abstract integer n. In other words,

we cannot prove Π(n : N) . consistent(MLTTn).

This is not too difficult to see:
We need n+4 universes to prove consistency of MLTTn. Thus, we would need
an infinite number of universes to prove Π(n : N) . consistent(MLTTn),
but a proof term can only contain finitely many universes.

This means we cannot do our proof of consistency of MLTT after all. All is
well!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Not so fast!
There is a catch:
▶ It is true that given an actual integer n = 3, 6, 23... we know how to

build a proof of consistency of MLTTn.
▶ However, we cannot do it from an abstract integer n. In other words,

we cannot prove Π(n : N) . consistent(MLTTn).

This is not too difficult to see:
We need n+4 universes to prove consistency of MLTTn. Thus, we would need
an infinite number of universes to prove Π(n : N) . consistent(MLTTn),
but a proof term can only contain finitely many universes.

This means we cannot do our proof of consistency of MLTT after all. All is
well!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Not so fast!

And actually, this sort of behaviour is already present in classical set
theory: ZFC can prove the consistency of any finite fragment of ZFC.

But it cannot prove this uniformly (as long as ZFC is consistent!)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

End of interlude



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bidirectional Type-Checking

Abel et al. only show decidability of conversion. While this is the most
complicated part of a type-checking algorithm, going from there to the
decidability of typing is non-trivial.

Indeed, Abel et al. use a theory without annotations on binders, for which
conversion is decidable but typing is not.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bidirectional Type-Checking

In our development, we show decidability of typing, by extending the
conversion checking algorithm to a full account of algorithmic typing,
defined in a bidirectional fashion.

In order to show the equivalence of the bidirectional presentation of MLTT
with the declarative presentation, we actually do three logical relations in
one:
our entire model is parameterized with a generic typing interface, which is
instantiated three times.

▶ once with the declarative typing and declarative conversion
▶ once with the declarative typing and algorithmic conversion
▶ once with the bidirectional typing and algorithmic conversion.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bidirectional Type-Checking

In our development, we show decidability of typing, by extending the
conversion checking algorithm to a full account of algorithmic typing,
defined in a bidirectional fashion.

In order to show the equivalence of the bidirectional presentation of MLTT
with the declarative presentation, we actually do three logical relations in
one:
our entire model is parameterized with a generic typing interface, which is
instantiated three times.

▶ once with the declarative typing and declarative conversion
▶ once with the declarative typing and algorithmic conversion
▶ once with the bidirectional typing and algorithmic conversion.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bidirectional Type-Checking

In our development, we show decidability of typing, by extending the
conversion checking algorithm to a full account of algorithmic typing,
defined in a bidirectional fashion.

In order to show the equivalence of the bidirectional presentation of MLTT
with the declarative presentation, we actually do three logical relations in
one:
our entire model is parameterized with a generic typing interface, which is
instantiated three times.

▶ once with the declarative typing and declarative conversion
▶ once with the declarative typing and algorithmic conversion
▶ once with the bidirectional typing and algorithmic conversion.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bidirectional Type-Checking

At each step, we use the reducibility model to more properties on the
system:

the first pass gives us enough properties to instanciate the generic
interface with the mixed system, and the second pass gives us enough to
instanciate it with the fully algorithmic system.

From there, we get a complete proof of decidability of the type-checking,
without having to duplicate the reducibility model.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bidirectional Type-Checking

At each step, we use the reducibility model to more properties on the
system:

the first pass gives us enough properties to instanciate the generic
interface with the mixed system, and the second pass gives us enough to
instanciate it with the fully algorithmic system.

From there, we get a complete proof of decidability of the type-checking,
without having to duplicate the reducibility model.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Continuity of Functionals in Martin-Löf
Type Theory

Martin Baillon, Assia Mahboubi, Pierre-Marie Pédrot



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Constructive Math and Continuity

Usually in constructive mathematics, every function f that can be defined
from the Cantor space N → B to the natural numbers N is uniformly
continuous:
we only need finitely many digits of the input to compute the output.

f(01101110000011110001...) = 3
f(11110011100100110000...) = 4
f(10111000111000010101...) = 0

...



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Constructive Math and Continuity

Usually in constructive mathematics, every function f that can be defined
from the Cantor space N → B to the natural numbers N is uniformly
continuous:
we only need finitely many digits of the input to compute the output.

f(01101110000011110001...) = 3
f(11110011100100110000...) = 4
f(10111000111000010101...) = 0

...



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Constructive Math and Continuity

Usually in constructive mathematics, every function f that can be defined
from the Cantor space N → B to the natural numbers N is uniformly
continuous:
we only need finitely many digits of the input to compute the output.

f(01101110000011110001...) = 3
f(11110011100100110000...) = 4
f(10111000111000010101...) = 0

...



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Martin-Löf Type Theory

Martin-Löf Type Theory was originally designed as a framework for
constructive mathematics.
Does it mean that all functions (N → B) → N are continuous in MLTT?

The internal statement of continuity is not provable:
there is no term of type Π f . Σ n . uniformly_continuous(f, n).

(indeed, this statement is false in the usual set-theoretic model)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Martin-Löf Type Theory

Martin-Löf Type Theory was originally designed as a framework for
constructive mathematics.
Does it mean that all functions (N → B) → N are continuous in MLTT?

The internal statement of continuity is not provable:
there is no term of type Π f . Σ n . uniformly_continuous(f, n).

(indeed, this statement is false in the usual set-theoretic model)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Martin-Löf Type Theory

Martin-Löf Type Theory was originally designed as a framework for
constructive mathematics.
Does it mean that all functions (N → B) → N are continuous in MLTT?

The internal statement of continuity is not provable:
there is no term of type Π f . Σ n . uniformly_continuous(f, n).

(indeed, this statement is false in the usual set-theoretic model)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

External Continuity

Nevertheless, Coquand and Jaber used sheaf-valued logical relations to
show that all functions from the Cantor space to N are uniformly
continuous4.

Their proof is external: it is done by induction on typing derivations in
some meta-theory.

4Coquand and Jaber, A Note on Forcing and Type Theory



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

External Continuity

Nevertheless, Coquand and Jaber used sheaf-valued logical relations to
show that all functions from the Cantor space to N are uniformly
continuous4.

Their proof is external: it is done by induction on typing derivations in
some meta-theory.

4Coquand and Jaber, A Note on Forcing and Type Theory



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Continuity of MLTT in MLTT

Martin Baillon, Assia Mahboubi and Pierre-Marie Pédrot are working on an
extended version of this argument in our Coq framework for logical
relations.

▶ Their model supports large elimination of inductive types, which
makes the logical relation more complex (as types needs to be
sheafified too)

▶ The argument can be carried out in MLTT itself. This is as close as we
can get to an internal proof of continuity: we get an inhabitant of
Π f . (MLTT ⊢ f : BN → N) → Σ n . uniformly_continuous(f, n)
but of course, we do not have internally that all functions are
well-typed.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Continuity of MLTT in MLTT

Martin Baillon, Assia Mahboubi and Pierre-Marie Pédrot are working on an
extended version of this argument in our Coq framework for logical
relations.

▶ Their model supports large elimination of inductive types, which
makes the logical relation more complex (as types needs to be
sheafified too)

▶ The argument can be carried out in MLTT itself. This is as close as we
can get to an internal proof of continuity: we get an inhabitant of
Π f . (MLTT ⊢ f : BN → N) → Σ n . uniformly_continuous(f, n)
but of course, we do not have internally that all functions are
well-typed.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Continuity of MLTT in MLTT

Martin Baillon, Assia Mahboubi and Pierre-Marie Pédrot are working on an
extended version of this argument in our Coq framework for logical
relations.

▶ Their model supports large elimination of inductive types, which
makes the logical relation more complex (as types needs to be
sheafified too)

▶ The argument can be carried out in MLTT itself. This is as close as we
can get to an internal proof of continuity: we get an inhabitant of
Π f . (MLTT ⊢ f : BN → N) → Σ n . uniformly_continuous(f, n)
but of course, we do not have internally that all functions are
well-typed.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Church-Turing Thesis in Martin-Löf
Type Theory

Martin Baillon, Yannick Forster, Assia Mahboubi, Kenji Maillard,
Pierre-Marie Pédrot, L.P.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Constructive Mathematics and
Computability

Perhaps more fundamentally than continuity, constructive maths is
supposed to enforce effective computability:
any constructively defined integer function f should come with some
effective process that takes an integer n and outputs f(n).

According to the Church-Turing thesis, this is the same as saying that
constructively defined functions can be computed by a Turing machine, or
lambda-calculus.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Constructive Mathematics and
Computability

Perhaps more fundamentally than continuity, constructive maths is
supposed to enforce effective computability:
any constructively defined integer function f should come with some
effective process that takes an integer n and outputs f(n).

According to the Church-Turing thesis, this is the same as saying that
constructively defined functions can be computed by a Turing machine, or
lambda-calculus.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In Martin-Löf Type Theory

As with continuity, the internal statement of computability is not provable

Π (f : N → N) . Σ (t : Λ) . computes_function(f, t)

On the other hand, we already proved the external statement of
computability: our reducibility proof contains a notion of reduction, and we
proved that it implies conversion and always terminates.

In fact, this proof extends the computability to all types (not only integer
functions), and even to open terms.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In Martin-Löf Type Theory

As with continuity, the internal statement of computability is not provable

Π (f : N → N) . Σ (t : Λ) . computes_function(f, t)

On the other hand, we already proved the external statement of
computability: our reducibility proof contains a notion of reduction, and we
proved that it implies conversion and always terminates.

In fact, this proof extends the computability to all types (not only integer
functions), and even to open terms.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Internalising Computability

Take one step further: can we add a computability axiom to MLTT? It might
not be provable, but is is consistent to postulate it?

Π (f : N → N) . Σ (t : Λ) . computes_function(f, t)

This axiom can be separated into two components:
quote : (f : N → N) → Λ
eval : (f : N → N)(n : N) → computes_to((quote f) @ ⌈n⌉, ⌈f n⌉)

In other words, we can recover the code of any integer function, and it
should compute said function.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¬funext

Quote and eval are incompatible with the extensionality of functions.

Proof:
▶ funext implies that two extensionally equal functions have equal codes
▶ since the equality between codes is decidable, we can use quote to

decide whether an integer function has the same code as the zero
function

▶ thus, we can decide whether an integer function is identically zero
▶ this implies that we can decide the halting problem with an integer

function
▶ and then, we can recover the code of this integer function, which is a

program that decides the halting problem. Contradiction.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¬funext

Quote and eval are incompatible with the extensionality of functions.

Proof:
▶ funext implies that two extensionally equal functions have equal codes
▶ since the equality between codes is decidable, we can use quote to

decide whether an integer function has the same code as the zero
function

▶ thus, we can decide whether an integer function is identically zero
▶ this implies that we can decide the halting problem with an integer

function
▶ and then, we can recover the code of this integer function, which is a

program that decides the halting problem. Contradiction.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A Strategy to Prove Consistency?

In fact, it is not completely clear how to prove that quote and eval are not
inconsistent.

Possible lead: equip them with a reduction strategy, and use a reducibility
model to show normalisation and thus consistency.

This intuitively makes sense, because normalisation models are quite close
in spirit to realisability models, except that they do not enforce funext:

while two functions f, g are equal in the model when they send equal inputs
to equal outputs, the presence of neutral terms means that equality of f and
g in the model implies that they have the same normal form, i.e. the same
code.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A Strategy to Prove Consistency?

In fact, it is not completely clear how to prove that quote and eval are not
inconsistent.

Possible lead: equip them with a reduction strategy, and use a reducibility
model to show normalisation and thus consistency.

This intuitively makes sense, because normalisation models are quite close
in spirit to realisability models, except that they do not enforce funext:

while two functions f, g are equal in the model when they send equal inputs
to equal outputs, the presence of neutral terms means that equality of f and
g in the model implies that they have the same normal form, i.e. the same
code.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A Strategy to Prove Consistency?

In fact, it is not completely clear how to prove that quote and eval are not
inconsistent.

Possible lead: equip them with a reduction strategy, and use a reducibility
model to show normalisation and thus consistency.

This intuitively makes sense, because normalisation models are quite close
in spirit to realisability models, except that they do not enforce funext:

while two functions f, g are equal in the model when they send equal inputs
to equal outputs, the presence of neutral terms means that equality of f and
g in the model implies that they have the same normal form, i.e. the same
code.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


	Applications

